p. 83: 3 [adapted from latex HW of Colin McKinney]

Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X.

 $\mathcal{T}_c := \{U | X - U \text{ is countable or all of } X\}$. First, we must ensure that X and \emptyset are elements of \mathcal{T}_c . For $U = \emptyset$, $X - \emptyset = X$. Thus, $\emptyset \in \mathcal{T}_c$. For U = X, $X - X = \emptyset$. The null set is finite, and so it is also countable. Hence $X \in \mathcal{T}_c$.

We must also show that \mathcal{T}_c is closed under arbitrary unions. Take $U_{\alpha} \in \mathcal{T}_c$. Since $X - U_{\alpha}$ can be either countable or all of X, we must consider two cases.

Case 1 : There exists an α_0 such that $X - U_{\alpha_0}$ countable. $X - \bigcup U_{\alpha} = \cap (X - U_{\alpha})$, and since $X - U_{\alpha_0}$ is countable, and $\cap (X - U_{\alpha}) \subset X - U_{\alpha_0}$, it follows that $\cap (X - U_{\alpha})$ is countable. Hence $X - \bigcup U_{\alpha}$ is countable, and so in this case $\bigcup U_{\alpha} \in \mathcal{T}_c$.

Case 2 : $X - U_{\alpha}$ is all of X for all α . Hence $U_{\alpha} = \emptyset$ for all α . It follows that $\cup U_{\alpha} = \emptyset \in \mathcal{T}_c$

Hence \mathcal{T}_c is closed under arbitrary unions.

Lastly we must show that \mathcal{T}_c is closed under finite intersections. Take $U_i \in \mathcal{T}_c$.

Case 1 : $X - U_i$ countable for all *i*. A finite union of countable sets is also countable. By Problem 1.0 of Homework 1, we may write

$$X - \bigcap_{i=1}^{n} U_{i} = \bigcup_{i=1}^{n} (X - U_{i})$$
(1)

Since $\cup (X - U_i)$ is countable, the left hand side of (1) is also countable. Thus, $\bigcup_{i=1}^n U_i \in \mathcal{T}_c$ in this case.

Case 2 : $X - U_{i_0}$ is all of X for some $i_0 \in \{1, ..., 1\}$. Hence $U_{i_0} = \emptyset$, and $\bigcap_{i=1}^n U_i = \emptyset \in \mathcal{T}_c$.

Thus, \mathcal{T}_c is closed under finite intersections. \mathcal{T}_c has thus satisfied all the requirements to be a topology.

Is $\mathcal{T}_{\infty} := \{U | X - U \text{ is infinite, empty, or all of } X\}$ a topology on X?

If X is infinite, $U_x = \{x\} \in \mathcal{T}_{\infty}$, where x is any element of X since $X - U_x$ would remain infinite. However, let us define an indexing set $Y := X - \{x_1, x_2\}$, where x_1 and x_2 are two distinct elements of X. Hence

$$X - \bigcup_{x \in Y} U_x = \{x_1, x_2\}.$$
 (2)

Since $\{x_1, x_2\}$ is finite, $X - \bigcup_{x \in Y} U_x$ is finite. Hence $\bigcup_{x \in Y} U_x$ is not an element of \mathcal{T}_{∞} . Thus when X is infinite, \mathcal{T}_{∞} is not a topology since it is not closed under unions.

Suppose X is finite. Note \emptyset and X are elements of \mathcal{T}_{∞} . If $U = \emptyset$, then X - U = X, so $\emptyset \in \mathcal{T}_{\infty}$. If U = X, then $X - X = \emptyset$, and so $X \in \mathcal{T}_{\infty}$.

Let $U \in \mathcal{T}_{\infty}$. Since X is finite, X - U is not infinite. Thus $X - U = \emptyset$ or X - U = X. Thus, U = X or $U = \emptyset$. Hence \mathcal{T}_{∞} is the indiscrete topology and is thus a topology.