section 18: 13) Suppose $A \subset X$. Let $f: A \rightarrow Y$ be continuous where Y is T_{2}. If $g_{i}: \bar{A} \rightarrow Y$ is continuous for $i=1,2$ and if $\left.g_{1}\right|_{A}=\left.g_{2}\right|_{A}=f$, then $g_{1}=g_{2}$

Pf: Suppose $g_{1} \neq g_{2}$. Then $\exists x \in \bar{A}-A$ such that $g_{1}(x) \neq g_{2}(x)$. $Y T_{2}$ implies $\exists V_{1}, V_{2}$ open in Y such that $g_{i}(x) \in V_{i}$ and $V_{1} \cap V_{2}=\emptyset$
$x \in g_{i}^{-1}\left(V_{i}\right)$ implies $x \in g_{\underline{1}}^{-1}\left(V_{1}\right) \cap g_{2}^{-1}\left(V_{2}\right) . g_{i}$ continuous implies $g_{i}^{-1}\left(V_{i}\right)$ open in \bar{A} and hence $g_{1}^{-1}\left(V_{1}\right) \cap g_{2}^{-1}\left(V_{2}\right)$ open in \bar{A}. Thus there exists U open in X such that $g_{1}^{-1}\left(V_{1}\right) \cap g_{2}^{-1}\left(V_{2}\right)=U \cap \bar{A}$. Note $x \in U$.
$x \in \bar{A}-A$ implies $x \in A^{\prime}$. Thus $\exists a \in U \cap A-\{x\} \subset g_{1}^{-1}\left(V_{1}\right) \cap g_{2}^{-1}\left(V_{2}\right)$. But $f(a)=g_{i}(a) \in$ $g_{i}\left(g_{i}^{-1}\left(V_{i}\right)\right) \subset V_{i}$. But $V_{1} \cap V_{2}=\emptyset$.

NOTE: It may have been simpler to WLOG assume $X=\bar{A}$, but you must state why this WLOG works.

