22M:132: Topology Exam 2 Nov. 18, 2010

[10] 1.) Definition: X is locally path connected if

- 2.) Suppose \mathbb{R}^{ω} has the uniform topology with uniform metric $\overline{\rho}$.
- [4] 2a.) $\overline{\rho}(\mathbf{x}, \mathbf{y}) =$
- [4] 2b.) $B_{\overline{\rho}}(\mathbf{0},2) =$ ______
- [4] 2c.) Let $\mathbf{x}_n = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots) \in \mathbb{R}^{\omega}$. Let $A = \{\mathbf{x}_i \mid i \in \mathbb{Z}_+\}$. Then $A^o =$ ______.

[18] 3.) Circle T for true and F for false. If a statement is false, show that the statement is false by providing a counter-example. You do not need to prove that your example is a counter-example. 3a.) If A is a compact subspace of X, then A is closed in X.

Т

Т

F

F

F

3b.) Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is connected.

3c.) Let A be a path connected subspace of X. If $A \subset B \subset \overline{A}$, then B is path connected. T [60] Prove 2 of the following 5. Clearly indicate your choices. You may do a third problem for extra credit.

First two choices:

Third choice (extra credit): _____

- 1. Compact Hausdorff implies T_3 .
- 2. Define an equivalence relation on \mathbb{R}^1 by $x \sim y$ if $x y \in \mathbb{Z}$. Let X / \sim be the corresponding quotient space. It is homeomorphic to a familiar space. What is it? [Hint: set $g(x) = e^{2\pi x}$]
- 3. Let H be a subspace of the topological group (G, \cdot) . Show that if H is also a subgroup of G, then both H and \overline{H} are topological groups. Hint: Recall that H is a subgroup of the group G if and only if it is nonempty and closed under products and inverses.
- 4. Let $\mathbf{x}_n = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots) \in \mathbb{R}^{\omega}$. Let $A = {\mathbf{x}_i \mid i \in \mathbb{Z}_+}$. If \mathbb{R}^{ω} has the uniform topology, determine \overline{A} .
- 5. Suppose X is locally compact and $f: X \to Y$ is a continuous, surjective, open map. Then f(X) is locally compact.