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KNOT TYPES OF SATELLITE KNOTS AND TWISTED KNOTS

RIMIHIKO MUTEGI

Let K be a knot inside a standardly embedded solid torus V in the 3-sphere S?.
In the following, for nontriviality, we assure that K cannot be lie in a 3-ball in V.
Knotting the solid torus V in the shape of another knot as in Figure 0.1, as the
image of K, we obtain a new knot K' in S*. A knot obtained in such a manner is
called a satellite knot. On the other hand, twisting the solid torus V' several times,
we get a new knot K" in §°. The purpose in this article is to give a survey of some
aspects of the study of these constructions.

K!
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X

Figure 0.1
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74 KIMIHIKO MOTEGI

1. SATELLITE KNOTS OBTAINED FROM A GIVEN PATTERN

Schubert [17] introduced the notion of the product of knots, and afterward gen-
eralized this to an operation “taking satellite” [18].

First we recall the construction of satellite knots. Let V be a standardly embedded
solid torus in the oriented 3-sphere S? with the orientation induced from that of S3,
and let K be a knot in V, which cannot be contained in a 3-ball in V. Using an
orientation preserving embedding f : V — 83 such that f(V) is knotted in 5%, we
can obtain a new knot f(K)in S3. We call the knot f{K) a satellite knot and (V, K)

a pattern (Figuee 1.1).

V N

>

(V, K) : pattern f(K) . satellite knot
Figure 1.1

The wrapping number (resp. winding number) of A in V' is defined to be the min-
imal geometric intersection number (resp. algebraic intersection number) of K and
a meridian disk of V. We denote this number by wrapy (K) (resp. windy(K)).

For example, wrapy (K) = 2 and windy (K) = 0 for the pattern (V, K) given by
Figure 1.2.

\Y wrapy/(K) = 2

windy/(K) = 0
g Vv

Figure 1.2
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Throughout this section we assume that all knots are oriented and consider two
knots K, and K to be equivalent if and only if there is an orientation preserving
homeoworphism 2 : $* — S which carries K; onto K3 so that their orientations
match, We write K, = K, if K, and K, are equivalent, and —K denotes the
kot obtained from K by inverting its orientation. For an orientation preserving,
embedding f : V. — S, we understand that f(V) and f(K) have orientations
induced from that of V and K respectively via the embedding f.

The construction of a satellite knot depends on two parameters: the pattern
(VLA wind e orientalion preserving cmbedding [ ¢V — 5% Let us choose a
pattern (¥, K). Then by changing the embedding as in Figure 1.3, we can obtain
other sutellite knots.

If two cmbeddings are isotopic, then clearly they define equivalent satellite knots.
Conversely, can a satellite knot determine an isotopy class of embeddings of V into
5§37 Precisely we consider the following problem.

K N

Figure 1.3
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Problem 1.1. Let (V,K) be a pattern and f : V — S3 an orientation presery-
ing embedding such that f(V) is knotted in S. Determine orientation preserving
embeddings g1 V — S* | up to isotopy, such that 9(K) = f(K).

When wrapy (K} = 1, the operation “taking satellite” is the same as “taking
product” (Figure 1.4).

K)
K
- L/_i R
satellite /
> ” 0)
product fv)
Figure 1.4

In this case, we have the following motivating result due to Schubert {17].

Theorem 1.2. (Implication of Schubert’s unique factorization theorem [17])
Let (V. K) be a pattern with wrapy(K) = 1 and f. gV — S be two arientation
prescruing embeddings. Then f(K) = g(K) if and only if fICvY = g(Cy), where
Cv denotes an oriented core of V.

This is the result which we would like to generalize to any pattern. Before stating
a result, we start with some examples.

A pattern (V, K) is said to be symmetric if (V. K) admits an orientation pre-
serving homeomorphism ¥ : V — V which satisfies W(C)] = ~[Cv] € H (V)
and ¥(K) = K. Let s be the r-rotation along the axis L as shown in Figure 1.5.
By the definition, for a symmetric pattern (V, K), K is null-homologous in V {or
equivalently windy (K) = 0).

The pattern (V, K) given by Figure 1.2 is symmetric. In fact, for some homeo-
morphism y isotopic to the identity o o s gives the symmetry of (V,K).

For any symmetric pattern we can observe

Example 1.1. Let (V, K) be a symmetric pattern and f:V — 5% an orienta-
tion preserving embedding such that f(Cy) is a non-invertible knot (i.e. f(Cy) 2
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—f(Cy) ). Then for two embeddings f and g = f o s, we have f(K) = g(K) and
f{C) # 9(Cy). In particular f and g are not isotopic.

Proof. By the choice of g, g(Cy) = —f(Cv). Hence f(Cy) # g(Cv). Using the
symmetry of (V, K} we can verify that f(K) = g(K). O

\Y

Figure 1.5

As a concrete example we may take the pattern given by Figure 1.2 and an
embedding f 0 V — S% so that f(Cy) is the pretzel knot K(3, 5, 7) (sec Figure
1.6). which is known to be non-invertibie {22}

=2

‘ y
 UY e
_— ]
g\‘

W

=0

Figure 1.6
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Example 1.2. Let (V, k) be a pattern such that wrapy(k) = 1 and k = K(3, 5, 7)
in § (Figure 1.7). (For simplicity we assume that [k] = [Cv] € H\(V).)

Figure 1.7

Let (V, K) be a pattern such that K is the untwisted double of k. Let f (resp. g)
be an orientation preserving embedding from V' into 53 so that f(Cv) = (—k)(—k)
(resp. 9(Cv) = ki(—k)), see Figure 1.8.

Then for two embeddings f and g, we have f{K) = g(K). But f(Cy) and g(Cv)
cannot be equivalent even in the weakest sense.

Proof. We note that since k = K(3, 5, 7) is non-invertible and non-amphicheiral, no
two of k, —k, k*, —k* are cquivalent, where &* denotes the mirror image of & [22]. In
addition k is of genus one and so it is prime. Suppose that there is a homeomorphism
of S® carrying f(Cy) onto eg(Cy) (¢ = £1). Then we have (—k)f(—k) = (—ek)f(ck)
or (—k)i(—k) = (—ek")i(ek*). In any case —k = k or k = k* must hold by Schubert's
unique factorization theorem. This is a contradiction. Therefore f(Cv) and g(Cv)
are not equivalent even in the weakest sense.

Let us prove f(K) = g(K). First we note that f(K) is the untwisted double
of (—k)i(—k)tk and g(K) is the untwisted double of kf(—k)k = —((=k) i (=k)tk).
Using the symmetry of the pattern given by Figure 1.2, we can observe that f (K) =
9(K). O
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@ ‘ f(C) = (k) #(K)

C\: N
g J‘/‘f?(‘/(“f?
2 3 32 2 Z

Figure 1.8

Example 1.2 shows that Theorem in {6] and hence also Corollary in {19 are not
true.

The theorem below shows that the examples described above are worst that can
happen. To state the result we prepare some terminologies.

Let Cy bLe an oriented core of a solid torus V' in S§*. Then we choose a pre-
ferred meridian-longitude pair (my,8y) of V so that [&] = [Cy] € H\((V) and
€k(my,Cy) = 1, where ¢k(a, 3) denotes the linking number of a and 3. Let f :
¥V — 5% be an orientation preserving embedding, then we adopt f(Cy) as an oriented
core of f(V). This determines a preferred meridian-longitude pair (mgu-),54) of
f(V) so that {£;0n] = [f(Cv)] € H\(f(V)) and €k(myvy, f(Cy)) = 1. Then we
have an expression [f(¢v)] = [€;0] + nlmyuny] € Hi(F(V)) for some integer n.
We define the twist number of the embedding f : V — 5% to be n and denote it
by twist(f). Note that [f(my)] = [myuy]. An orientation preserving embedding
f:V — 5% is said to be faithful if twist(f) = 0.
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Theorem 1.3 ({8]). Let (V, K) be a pattern with wrapy(K) > 2 and f: V — 5% an
orientation prescrving embedding such that f(V) is knotted in S®. Let g: V — S3 be
an orentation preserving embedding which satisfies g(K) = f(K). Then g(Cy) &
f(Cv), or f(Cv) = KollK, and g(Cv) = (— KoK\, where Ky and K, are knots
uniquely determined by the embedding f and the pattern (V. K). Furthermore in any
case twist(f) = twist(g).

We remark that the above decomposition f(Cy) = KoK does not depend on g.
To make precise, we explain how we can determine the decomposition of f(Cy) in
the above theorem.

Let W be a solid torus in V. We say that W has the property (%) if the following
conditions are satisfied.

o W contains K in its interior,
e wrapy (Cw) = 1, where Cyy is a core of W,
e (' is not a corc of V.

If there is no solid torus W' in V satisfying the property (), then we put K, =
J(Cy) and define the decomposition of f(Cy) to be f(Cy) = K.

Now let us assume that there is a solid torus W in V satisfying the property ().
We say that the solid torus W(C intV) is (x)-minimal if therc is no further solid
torus W'(C intW) satisfying the property (%) for W. Then by the uniqueness of the
torus decomposition [4] [5], if there is a solid torus satisfying the property () in V,
then there exists a (+)-minimal solid torus W in V, unique up to isotopy.

Let W be a (*)-minimal solid torus in V. We choose an orientation of Cyy so
that Ciy is homologous to Cy. Then we have a description Cy = Cy 4k for some
nontrivial knot & (sece Figure 1.9).

<

Figure 1.9
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Let k = ki1 ...k, be a prime decomposition of k. First we delete all the invertible
factors and all the pairs (k:, k;) with k; = k;. As a result we obtain ki3 . ..tkm (re-
indexing if necessary). Then we put K, = —(ki§. - dkm). (Possibly K| is a trivial
knot.) If f(Cy) has an expression f(Cv) = KoK, for some knot Kp, then we
define the decomposition of f(Cv) to be F(Cv) = KiK. If f(Cy) admits no
such expression we put Ko = f(Cy) and define the decomposition of f(Cv) to be
FICY) = Ry itsell. It should be noted that the decomposition of f(Cy) depends
only on the pattern (V, K) and the embedding f.

Exampls 1 cormsponds 1o the ~ase where K ois trivial in Theorem 13 In
Example 1.2, the decomposition of f(Cy) is given by f(Cy) = {—k)4{~k) and this
example shows that K, in Theorem 1.3 can be nontrivial.

let fog:V — S3 be orientation preserving embeddings. Then f and g are
isotopic if and only if f(Cy) = g(Cy) and twist( f) = twist(g). Theorem 1.3, together
with this fact, answers the question: How many embeddings (up to isotopy) can give
equivalent satellite knots?

Corollary 1.4 ([8]). Let (V,K) and f be as in Theorem 1.3. Then there is at
most one orentation preserving embedding (up to isotopy) g : V' — 5% whach s not
wsotopic to f and glK) = f(R).

If we assime further that windy(K) # 0, then we can improve Theorem 1.3 as
follows.

Theorem 1.5 ([8]). Let (V. K) be a pattern such that wrapy(K) > 2 and K 1s
homologically essential in V. and let f oV — S¥ he an orientation preserang
cmibedding such that f(V) s Lnotted in S*. If an orientabon prescrving embediding
gV = S sahsfies glK) = F(K). then g is wsotopic to f.

2. SATELLITE KNOTS OBTAINED FROM A GIVEN EMBEDDING

)

Recall that to define a satellite knot we need two parameters: a pattern {4\ K
and an embedding f : V. — S$3. In the previous section we consider a family
of satellite knots obtained from the same pattern, i.e.. we take an infinite family of
embeddings of V" into §3 as parameters. On the contrary, in this section. we consider
satellite knots obtained from the same embedding V — S*, ie., we take patterns
as parameters. In the following we consider unoriented knots in the oriented 3-
sphere 5% For two (unoriented) knots K and Ko, we continue to write Ky = Ko
to denote that A& and K are ambient isotopic in S%. For two patterns (V. Ky
and (V, Ka), if there exists an orientation preserving self-homeomorphism A of V
sending preferred-longitude to & preferred-longitude which satisfies h{ K} = K5, then
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we write (V, K;) ~ (V, K3). Furthermore if the homeomorphism h sends preferred-
longitude to preferred-longitude, then we write (V, K)) = (V, K3). (V. Ki) = (V. K3)
if and only if K| and K, are ambient isotopic in V.

Theorem 2.1 ([12]). Let (V. K,) (i = 1,2) be a pattern. Suppose that K| is un-
knotted in S and windy(Ky) # 0. If f(K)) 2 f(K3) in §% for some orientation
prescrving embedding f: V — 53, then (V, K|) ~ (V, K3) holds.

The next example shows the neccessity of the condition “windy (K>) # 0”.

Example 2.1. In Figure 2.1, K is unknotted in S° and K, is knotted in S3.
However windy(K3z) = 0. Figure 2.2 indicates an isotopy between f(K,) and f(K,).

v, Ky)
f(K,)
f/ N —
— AQOLALNN
2‘127_ \_/’\'lzl
Vv, Ky)

Figure 2.1
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slide the twists l
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n—rotation

2

Figure 2.2
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If K| is knotted, even when windy (K2) # 0, there is an example such that

(V. K1) % (V, K,) but f(K)) = f(K>) in S3, see Example 2.2.
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Example 2.2.

f S
~

Figure 2.3

(V. Kyp)

We then apply Theorem 2.1 to questions:

(1) Suppose that K is unknotted and K is knotted in S®. Can f(K;) be ambient
isotopic to f(K3) in 52 for some embedding f: V — §* ?

(2) Suppose that K and K are both unknotted in S®. How are patterns (V, k)
and (V, K3) related if f(K,) and f(K,) are ambient isotopic in 5° for some
embedding f: V — §% 7

We can answer the first question by
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Corollary 2.2 ([12)). Let (V,K,) (i = 1,2) be a pattern. Suppose that K is un-
knotted and Ko is knotted in S® and windy (K;) # 0. Then for any embedding
f:V =S f(K)# f(Ks) in S°.

Proof Assume that f(K,) = f(K,) for some embedding f : V' — S® Then from
Theorem 2.1, we have (V,K;) ~ (V,K3). Extending the orientation preserving
homeomorphism of V' to that of S*, we see that K| = Kj in 5*, a contradiction. U

Example 2.1 shows the necessity of the condition “windy (K3) # 0" in Corollary 2.2.
As « special case of Theorem 2.1. we have the following which gives an answer to
the second question.

Corollary 2.3 ([12)). Let (V, K;) be a pattern and K, a trivial knot in S$3(i=1,2).
Supposc that windy(K)) # 0 or windv(K>) # 0. If f(Ky) = F(K3) for some
embedding f -V — S3, then (V, Ky) ~ (V, K3).

Since (V. K} ~ (V,K>) implies windy(K;) = windv(K>) and wrapy(Ki) =
wrapy ( Ky}, we have the following.

Corollary 2.4 ([12]). Suppose that K; is a trivial knot contained in a standardly
embedded solid torus Voin 53 (1 = 1,2).

(1) If windy(K,) # windy(K3), then f(K)) ¥ f(K2) in S* for any embedding
fiv =S

(2) When windy(K,) = windy(Ky) # 0, if wrapy(Ky) # wrapy (K3), then
FIK)) 2 F(Ky) in S? for any embedding f - V — S*.

In the case where windy (K;) = windy (K2) = 0. the situation is quite different.

Theorem 2.5 ([12]). For any faithful embedding f : V — S3 (i, twist{f) = 0).
there ertst patterns (V, Ky) and (V, Ky) which satisfy

(1) both K, and K, are unknoited in S3,
(2) windy (K,) =windy(K;) = 0, (V, K1) # (V, K2), and
(3) f(K)) = f(K2) in S

Proof. For the given faithful embedding f. actually we can construct required pat-
terns as follows: the construction is due to Makoto Sakuma.

First let us consider a 3-components Brunnian link L = kU Ly U L» depicted in
Figure 2.4.
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~

L 7 L
L _fD

Let (m,,¢,) be a preferred meridian-longitude pair of L; (: = 1,2). Let t be a
knot ambient isotopic to f(C), where C denotes a core of V, and (m, £) a preferred
meridian-longitude pair of t. Removing a tubular neighborhood N(L,) of L, and
gluing the knot exterior E{t) = S3~intN(t) so that m; = £ and ¢; = m, we obtain
5% = (SP—intN(Ly)) U, ., E(t) and a new knots K3_; and Ls_; as the images of

£ -m

k and Ly, respectively, for ¢+ = 1,2. It is easy to sec that both K3_; and L,
are unknotted in S®. Hence by putting V = S3—intN(Ly_;)(D Ks_:), we have
a pattern (V, K;_,) with windy(K3-;) = 0. In this way we obtain two patterns
(V,K\) and (V, K;). By the construction, for the faithful embedding f : V — S3,
(K1) = f(K;) in S%. In fact, roughly speaking, f(K) and f(K;) can be described
as the knot obtained from & in Figure 2.4 by simultaneously replacing neighborhoods
of disks bounded by L; and L, by tubes knotted according to the given knot ¢.

We can prove (V, K) # (V, K;) by showing that wrapy(K;) = 2 and wrapy (K?)
4. For more details, see [12].

Figure 2.4

E
This result can be generalized to

Corollary 2.6 ({12]). For any knot K in S* and any faithful embedding f : V —
53, there etist patterns (V, K} and (V, K;) which satisfy
1) K=KinS fori=1,2,
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(2) windy(K,) =windy(K>3) =0, (V, K1) # (V. K3), and
(3) (K1) = f(K) in S5

Proof. Let (V, k) and (V, kz) be the patterns given by Theorem 2.5 depending on
the embedding f : V — S3. Since each k, is unknotted in S, we can locally replace
an unknotted arc of k, by a knotted arc (with a suitable direction) so that the result
K, represents K in S Then it follows from the choice of (V, k;) that (V, K,) and
(V1) are the desired natterns 7

3. KNOTS OBTAINED FROM TRIVIAL KNOTS BY TWISTING

In previous sections, we assume that f(V) is knotted in 5*. In what follows we
consider the case where f(V) is also unknotted in S3. So we may assume that
f(V)=Vand f:V — V is a twisting homeomorphism of V' with flp) = pand
f(A) = A+ nye, where (i, A) is a preferred neridian-longitude pair of V. We denote
the image of K by K,. (See Figure 3.1.)

K Kn = f(K)

twist

Figure 3.1
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When the wrapping number of K in V is zero, this operation does not affect the
knot types, so we always assume that wrapy{K) > 2 in the following.

If the original knot K is a trivial knot in S*, then we call the resulting knot K,
a twisted knot.

In this section we consider the possibility obtaining knots of special kinds from,
trivial knots by twisting.

3.1. When can a twisted knot be a trivial knot?

In such a special situation as indicated in the title. applying Gabai's result {1], we
can deduce the following.

Theorem 3.1 ({9], [7]). A tuisted knot K, (n # 0) is knotted in S®, except for the
case as in Figure 3.2.

1 - twist
—
P

-1 - twist
Figure 3.2

This result can be regarded as an answer to a very special case of the followmg
conjecture.

Conjecture 3.2. Let K be a knot 1n a standardly embedded solid torus V' in g7
A knot K, obtained from K by n-twist (n # 0) cannot be ambient isotopic ¢ K.
cxcept for the case as in Figire 3.3.

1 - twist
e

<————-——
-1 - twist

Figure 3.3
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3.2. When can a twisted knot be a composite knot?
We start with a motivating result proved by Scharlemann [19).

Theorem 3.3 ([15], see also [23]). A crossing change on a trivial knot cannot pro-
duce a composite knot (i.e., a knot of unknotting number one s prime).

Note that a crossing change on a knot K can be accomplished by a +1-twist with
wrapy (K) = 2 for some V, and Theorem 3.3 was generalized to the following.

Theorem 3.4 ([16]). Let V be a standardly embedded sohd torus in S3and K a
knot i V with wrapy (K ) = 2. Then a tunsted knot K, cannot be a composite knot
for any integer n.

In connection with this, Mathieu [9] proposed the question:
Question 3.5 ([9]). Can we have a composute tunsted knot?

Theorem 3.4 shows the impossibility in the case wrapy(K) = 2. On the con-
trary, we can answer this question in positive by constructing the following concrete
example.

Example 3.1 ([14]). Let (V, K) be a pattern depicted in Figure 3.4. Then Ky is a
product of the (2, 3)-torus knot and the (2, 5)-torus knot.

K SO K4 O U
OO0 1 - twist OOCC \
(O > j
999
N

Figure 3.4

In this example wrapy(K) = 4. Later Ohyama also foud an interesting and
simpler example with wrapy(K) = 3 such that K, is a prduct of the (2,3)-torus
knot and the figure eight knot. We can find other examples of composite twisted
knots in [20], [11] and [2]. There is an excellent account of examples of composite
twisted knots in [2]. It should be noted that all the examples are +1-twist, and it was
conjectured in [13] that a twisted knot can be a composite knot only for one integer
n € {1,-1}. In {21], Teragaito proved that if a twisted knot K, is a composite knot
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then || < 2 applying a combinatorial technique developed by Gordon and Luecke-

Later Goodman-Strauss [2], Hayashi and the author {3 independently proved the
following.

Theorem 3.6 ([2], [3])- If a twisted knot K, is a composite knot, then n = 1.

Goodman-Strauss (2] shows further that K; and K_, cannot both be composite
knots.

But the following question is still open.
Question 3.7. js the number of prime factors of Ky <27

Compare this with the following well-known question: Is the number of prime
factors of a manifold obtained by Dehn surgery on a knot in S is less than or equal
to 27
3.3. When can a twisted knot be a torus knot?

Let us start with a well-known example. Let K be a {£1, q)-cable of a core of a
standardly embedded solid torus V in S®. Then K is a trivial knot in S% and Kn
is a torus knot (which is a trivial knot again if g = 2 and n = F1) for any integer
n(# 0). We refer such an example as trivial example (sec Figure 3.5).

n - twist

(1, Q) - torus knot (1+nq’ q) - torus knOt
1

trivial knot

Figure 3.5
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As a nontrivial example, we have the following.

Example 3.2.

K K4

@ 1 - twist
@ - C/
trivial knot trefoil knot

Figure 3.6

Theorem 3.8. If a twisted knot K,, (n # 0} is a torus knot, then except for trivial
cramples n = 1.

This result is an implicit corollary of the joint work with Miyazaki {10, Theorem
1.2} about Seifert fibring surgery on knots in solid tori.

Theorem 3.9 ({10)). Let J be a knot in a solid torus W such that J 15 not contained
in a 3-ball in W. Supposc that @ manifold W(J;v) obtained from W by ~-surgery
on J is Seifert fibred. Then onc of the following holds.

(1) J 15 a core of W or a cable of a 0-bridge brawd in W

(2) v is integral (ee., a representative of v wmtersects a meridian of J eractly
once).

Proof of Theorem 3.8. Let J be a core of the complementary solid torus 5°—intV.
We note that the twisted knot K, can be obtained from K by —%—surgery on J.
Since K is a trivial knot in S3, W = §3—int N(K) is a solid torus, which contains
J in its interior. If K, is a torus knot, then E(K,) = W(J; —1) is a Seifert fibred
manifold over the disk with two exceptional fibres. Applying Theorem 3.9, we have
the following possibilities:

(1) J is a core of W or a cable of a 0-bridge braid in W.

(2) n==%L
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Now we suppose that (1) happens. If J is a core of W, then we have wrapy(K) =
1, a contradiction. If J is a cable of a 0-bridge braid in W. then it turns out that K
is also a cable of a O-bridge braid in V. Assume first that the (-bridge braid is not
a core of V. Then since K is unknotted in S3, the 0-bridge braid is a (+1, ¢)-cable
of a core of V (¢ > 2). Hence K, is a cable of a (1 + ng.q)-cable of a core of W.
The twisted knot K, can be a torus knot only when n = F1 and g = 2, otherwise
K, has a nontrivial companion. Next assume that the O-bridge braid is a core of
W, then K is a (£1,q)-cable of a core of V. In this case we have exactly a trivial
example. This completes the proof of Theorem 3.8. d0
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