22M:132: Topology Final Exam

Dec. 17, 2008

1.) Let **R** be the set of real numbers and let **Z** be the set of integers. Let $\overline{d}(x,y) = min\{1,|x-y|\}$, Identify the following subsets of **R**.

[3] 1a.)
$$B_{\overline{d}}(0,1) = \underline{\hspace{1cm}}$$

[3] 1b.)
$$\overline{B_{\overline{d}}(0,1)} = \underline{\hspace{1cm}}$$

[3] 1c.)
$$\{x \mid \overline{d}(x,0) \le 1\} = \underline{\hspace{1cm}}$$

- [3] 1e.) The closure of $\mathbf{Z} = \overline{\mathbf{Z}} = \underline{\phantom{\mathbf{Z}}}$
- [2] 2.) An example of a paracompact space is _____
- 3.) Circle T for true and F for false.
- [2] 3a.) If X is paracompact, then an arbitrary union of closed sets is closed. T
- [2] 3b.) If A is a locally finite collection of closed subsets of X, then $\bigcup_{A \in A} A$ is closed. T

[80] Prove 4 of the following 6. Clearly indicate your choices. Note **R** is the set of real numbers

- 1.) Let X be a topological space in which one-point sets are closed in X. Show that X is regular if and only if for all $x \in X$, for every open set U in X such that $x \in U$, there is an open set V such that $x \in V \subset \overline{V} \subset U$.
- 2i.) Suppose $f: X \to Y$ is bijective and continuous, X is compact, and Y is T_2 . Show that f is a homeomorphism.
- ii.) Give an example of a function $f: X \to Y$ which is bijective and continuous, but not a homeomorphism where X is a subspace of a manifold and Y is a compact manifold.
- 3.) A connected, locally pathwise connected space is pathwise connected. (Hint: find a set which is both open and closed).
- 4.) Recall that if G is a topological group, then $m: G \times G \to G$, m(x,y) = xy is continuous. Let G be a topological group and let $x, y \in G$.
- i.) Show that for every open neighborhood U of xy, there exists open sets, V and W, such that $x \in V$, $y \in W$ and $VW \subset U$.
- ii.) If U is an open set containing the identity element e, then there exists an open set V such that $e \in V$ and $V^2 = \{v_1v_2 \mid v_i \in V\} \subset U$.
- 5.) Every closed subspace of a paracompact space is paracompact.
- 6.) Let $Y^X = \{f : X \to Y\}$. Let $S(x, U) = \{f \in Y^X \mid f(x) \in U\}$. The topology of pointwise convergence on Y^X is the topology generated by the subbasis $\mathcal{S} = \{S(x, U) \mid x \in X, U \text{ open in } Y\}$.
- i.) $S(0,(1,2)\times(1,2))\subset (\mathbf{R}^2)^{\mathbf{R}}$. Give an example of a function in $S(0,(1,2)\times(1,2))$
- ii.) Prove that the sequence f_n converges in Y^X where Y^X has the topology of pointwise convergence if and only if for all $x \in X$, the sequence $f_n(x)$ converges to f(x) in Y.