Let \mathcal{A} be a collection of subsets of X. A collection \mathcal{B} of subsets of X is a *refinement* of \mathcal{A} if for all $B \in \mathcal{B}$, there exists $A \in \mathcal{B}$ such that $B \subset A$.

If the elements of \mathcal{B} are open, \mathcal{B} is an *open refinement* of \mathcal{A} . If the elements of \mathcal{B} are closed, \mathcal{B} is a *closed refinement* of \mathcal{A} .

Defn: X is *paracompact* if every open covering of X has a locally finite open refinement that covers X

Lemma 39.2 + Thm 41.4: metrizable implies paracompact.

A collection \mathcal{A} of subsets of X is *countably locally finite* if \mathcal{A} can be written as a countable union of collections \mathcal{A}_n , each of which is locally finite.

Ex: $\mathcal{D} = \{(-n, n) \mid n \in \mathbf{Z}_+\}$ is countable locally finite. Let $\mathcal{D}_k = \{(-n, n) \mid n \in [k, k+2]\}, k \in 2\mathbf{Z}_+$. Note $\mathcal{D} = \bigcup_{k \in 2\mathbf{Z}_+} \mathcal{D}_k$ and \mathcal{D}_k is locally finite since it's finite.

A simply ordered set X is *well ordered* if every nonempty subset of X has a smallest element (ie $A \subset X, A \neq \emptyset$ implies min(A) exists and $min(A) \in A$).

Ex: \mathbf{Z} is NOT well-ordered. Ex: \mathbf{Z}_+ is well-ordered Ex: \mathbf{R}_+ is NOT well-ordered.

The Well-ordering theorem: If X is a set, there exists an order relation on X that is well-ordered.

43: Complete Metric Spaces: In this section, (X, d) is a metric space.

Defn: x_n is Cauchy if for all $\epsilon > 0$, there exists an N such that for all n, m > N, $d(x_n, x_m) < \epsilon$.

Defn: (X, d) is complete if every Cauchy sequence in X converges in X.

Note \mathbf{R} is complete, but (0,1) is not complete. Hence completeness is NOT a topological property.

Suppose $f: (X, d) \to (Y, D)$ is continuous and bijective. Is $\rho_X(x_1, x_2) = D(f(x_1), f(x_2))$ a metric on X? Is $\rho_Y(y_1, y_2) = d(f^{-1}(y_1), f^{-1}(y_2))$ a metric on Y?

Lemma: convergent implies Cauchy

Lemma: (X, d) complete, A closed in X implies (A, d) is complete.

Lemma: (X, d) complete if and only if (X, \overline{d}) is complete where $\overline{d}(x, y) = \min\{d(x, y), 1\}$.

Lemma 43.1: (X, d) is complete if every Cauchy sequence has a convergent subsequence. Lemma: A Cauchy sequence is bounded.

Thm 28.2: If X is metrizable, then TFAE:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Thm 43.2: R^k is complete in both the euclidean metric d or the square metric ρ .

Lemma 43.3: $\mathbf{x_n} \to \mathbf{x}$ in ΠX_{α} if and only if $\pi_{\alpha}(\mathbf{x_n}) \to \pi_{\alpha}(\mathbf{x})$

Thm 43.4: \mathcal{R}^{ω} is complete with respect to $D(\mathbf{x}, \mathbf{y}) = sup\{\frac{\overline{d}(x_i, y_i)}{i}\}$

Recall $Y^J = \{(y_\alpha)_{\alpha \in J}\} = \{f : J \to Y\}$ where $f(\alpha) = y_\alpha$

Thus, $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\overline{d}(x_{\alpha}, y_{\alpha})\}\$ is the same as $\overline{\rho}(f, g) = \sup\{\overline{d}(f(\alpha), g(\alpha))\}\$

Thm 43.5: (Y, d) complete implies Y^J is complete with respect to the uniform metric.

Defn: The fn $f: X \to Y$ is bounded if f(X) is bounded [there exists $B(x_0, r)$ such that $f(X) \subset B(x_0, r)$]. Defn: $\mathcal{B}(X,Y) = \{f : J \to Y \mid f \text{ bounded } \}.$

If X is a topological space, define $\mathcal{C}(X,Y) = \{f: J \to Y \mid f \text{ continuous } \}.$

Thm 43.6: $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are closed subsets of Y^X under the uniform topology. Thus if Y is complete in uniform metric, $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete.

Defn: The sup metric, $\rho(f,g) = \sup\{d(f(\alpha),g(\alpha))\}$, is a metric on $\mathcal{B}(X,Y)$

Note: $\overline{\rho}(f,g) = \min\{\rho(f,g),1\}.$

Note: If X compact, $Y^X = \mathcal{B}(X, Y)$

Thm 43.7: There is an isometric imbedding of (X, d) into a complete metric space.

Defn: If $h: X \to Y$ is an isometric imbedding of metric space X into complete metric space Y, then $\overline{h(X)}$ is a complete metric space called the completion of X.

The completion of X is uniquely determined up to isometry. recommended HW 43: 8, 10

44: There exists a continuous surjective function $f: [0,1] \rightarrow [0,1] \times [0,1].$