Thm 27.1: Let X by a simply ordered set having the least upper bound property. In the order topology, each closed interval in X is compact.

Pf hint: Let $C = \{y \in (a, b] \mid [a, y] \text{ can be covered}$ by a finite number of $U_{\alpha} \} \cup \{a\}$. Let c = supC.

Thm 27.3: A subspace of \mathbb{R}^n is compact iff it is closed and bounded in the Euclidean metric or the square metric.

Idea of proof: (=>) compact Hausdorff implies closed. For bounded, look at $A \subset \bigcup_{n=1}^{\infty} B(\mathbf{0}, n)$

Idea of proof: (<=) If A closed and bounded $A \subset B(\mathbf{0}, r) \subset \Pi[-r, r]$

Note: a set which is bounded in one metric can be unbounded in a different metric even when both metrics generate the same topology.

Thm 27.4 (Extreme value thm).

 $f^{cont}: (X, compact) \to (Y, ordered)$ implies there exists $c, d \in X$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in X$.

Idea of proof: If f(X) has no largest element, then $f(X) \subset \bigcup_{y \in f(X)} (-\infty, y)$

Defn: $f : (X, d_x) \to (Y, d_y)$ is uniformly continuous if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $d_X(x_1, x_2) < \delta$ implies $d_Y(f(x_1), f(x_2)) < \epsilon$.

Defn: If A nonempty subset of metric space X and $x \in X$, then the distance from x to A is $d(x, A) = \inf\{d(x, a) \mid a \in A\}$

Note $d_A : X \to [0, \infty), d_A(x) = d(x, A)$ is a uniformly continuous function.

Idea of proof: Show that $d(x, A) - d(y, A) \le d(x, y)$

Defn: The diameter of A = diam(A) = $sup\{d(a_1, a_2) \mid a_1, a_2 \in A\}$

Lemma 27.5 (Lebesgue number lemma) Let $X \subset \bigcup U_{\alpha}$. If X is compact, there is a $\delta > 0$ such that if $diam(C) < \delta$, then there exists α_0 such that $C \subset U_{\alpha_0}$

Idea of Proof: If $X \notin \{U_{\alpha} \mid \alpha \in A\}$, take a finite subcover $\{U_i \mid i = 1, ..., n\}$. Let $C_i = X - U_i$.

Let $f : X \to \mathcal{R}$, $f(x) = \frac{1}{n} \Sigma d(x, C_i)$. Note f is continuous. Use extreme value that to find $m \in X$ such that f(m) is the minimum value of f(X). Show f(m) > 0 and let $\delta = f(m)$.

Thm 27.6 (Uniform continuity thm) $f^{cont}: (X, compact metric) \rightarrow (Y, metric)$ implies f uniformly continuous.

Idea of proof: $X \subset \bigcup_{y \in Y} f^{-1}(B_{d_Y}(y, \frac{\epsilon}{2}))$. Let δ = Lebesgue number of this cover.

Defn: Given a topological space X, x is an *isolated* point of X is $\{x\}$ is open in X.

Thm 27.7: If X is a nonempty compact Hausdorff space with no isolated points, then X is uncountable.

Step 1: Take a nonempty open set U and take $x \in X$ (note x may or may not be in U).

Use Hausdorff to find nonempty open set V such that $V \subset U$ and $x \notin \overline{V}$.

Step 2: Suppose $f : \mathcal{N} \to X$, $f(x) = x_n$. Show f is not surjective (i.e., need to find a point not in the image. Which definition of compact gives us a point?).

A space, X, is *compact* if every open cover of X contains a finite subcover.

A space, X, is *compact* if for every collection C of closed sets in X having the finite intersection property, $\bigcap_{C \in C} C \neq \emptyset$.

A space, X, is *limit point compact* if every infinite subset of X has a limit point.

A space, X, is *sequentially compact* if every sequence has a convergent subsequence.

Thm 28.1 Compactness implies limit point compactness, but not conversely.

Limit point compactness does not implies sequentially compactness (Hint: $((n, 1))_{n=1}^{\infty}$ in $\mathcal{Z}_+ \times \{1, 2\}$).

Compactness does not imply sequential compactness (Hint: $[0, 1]^{\omega}$).

Thm 28.2: In a metrizable space X, TFAE:

- 1.) X is compact
- 2.) X is limit point compact
- 3.) X is sequentially compact.