26. Compact Spaces

A family of sets, $\mathcal{F} = \{F_{\alpha} \mid \alpha \in A\}$, **covers** the set S if

$$S \subset \cup_{\alpha \in A} F_{\alpha}$$

 \mathcal{F} is said to be a cover of S.

$$\mathcal{F}_1 = \{ (x-1, x+1) \mid x \in S \} \text{ is a cover of } S \text{ since}$$

$$S \subset \bigcup_{x \in S} (x-1, x+1)$$

If $S \neq \emptyset$, take $x_0 \in S$ $\mathcal{F}_2 = \{ (x_0 - r, x_0 + r) \mid r > 0 \}$ is a cover of S since $S \subset \bigcup_{r > 0} (x_0 - r, x_0 + r)$

 \mathcal{F}' is a **subcover** of \mathcal{F} if $\mathcal{F}' \subset \mathcal{F}$ and \mathcal{F}' covers S.

 \mathcal{F}' is a **finite subcover** of \mathcal{F} (or a finite subfamily of \mathcal{F}) if \mathcal{F}' is a subcover of \mathcal{F} and \mathcal{F}' is finite.

 $\mathcal{F} = \{ (\frac{1}{n}, 1) \mid n = 1, 2, 3, ... \}$ is a cover of (0, 1) since $(0, 1) \subset \bigcup_{n=1}^{\infty} (\frac{1}{n}, 1)$.

 $\mathcal{F}' = \{ (\frac{1}{n}, 1) \mid n = 5, 6, 7, ... \}$ is a subcover of \mathcal{F} since $\mathcal{F}' \subset \mathcal{F}$ and $(0, 1) \subset \bigcup_{n=5}^{\infty} (\frac{1}{n}, 1)$.

Does there exist a finite subcover?

Defn: A family of sets, $\mathcal{F} = \{F_{\alpha} \mid \alpha \in A\}$, is an **open** cover of S if \mathcal{F} covers S and if F_{α} is open for all $\alpha \in A$.

Defn: A space S is **compact** if every open cover of S has a finite subcover.

Lemma: If X is finite, then X is compact.

Lemma 26.1: Let Y be a subspace of X. Every cover of Y consisting of open sets in X has a finite subcover if and only if every cover of Y consisting of open sets in Y has a finite subcover

Thm 26.2: Every closed subspace of a compact space is compact.

Lemma 26.4: If Y is a compact subspace of the Hausdorff space X, and $x_0 \notin Y$, then there exist disjoint open sets U and V of X such that $x_0 \in U$ and $Y \in V$.

Thm 26.3: Every compact subspace of a Hausdorff space is closed.

Thm 26.5: The image of a compact space under a continuous map is compact.

Thm 26.6: If $f: X \to Y$ is continuous and a bijection and if X is compact and Y is Hausdorff, then f is a homeomorphism.

Note: $f: [0,1) \rightarrow \{(x,y) \mid x^2 + y^2 = 1\},$ $f(x) = e^{2\pi i x}$ is continuous and a bijection, but f^{-1} is NOT continuous.

Note: $f: \{1,2\} \rightarrow \{1,2\}$, f(n) = n is a bijection. $X = \{1,2\}$ is compact since X is finite.

If X has the ______ topology and Y has the _____ topology, then f is continuous, but not a homeomorphism.

 $Y = \{1, 2\}$ is not _____.

Lemma 26.8 (The tube lemma). Suppose N is an open set in $X \times Y$ where Y is compact. If there exists an $x_0 \in X$ such that $x_0 \times Y \subset N$, then there exists an open set W such that $x_0 \in W$ and $W \times Y \subset N$.

Thm 26.7: The product of finitely many compact spaces is compact.

Thm 37.3 (Tychonoff theorem). An arbitrary product of compact spaces is compact in the product topology.

Defn: A collection C is said to have the **finite intersection property** if for every finite subcollection $\{C_1, ..., C_n\} \subset \mathcal{C}, \cap_{i=1}^n C_i \neq \emptyset$.

Example 1: $\{(-n,n) \mid n=1,2,3,...\}$ has/does not have finite intersection property.

Example 2: $\{(n, n+2) \mid n \in \mathcal{Z}\}$ has/does not have finite intersection property.

Example 3: $\{(0, \frac{1}{n}) \mid n = 1, 2, 3, ...\}$ has/does not have finite intersection property.

Thm 26.9: X is compact if and only if for every collection C of closed sets in X having the finite intersection property, $\bigcap_{C \in C} C \neq \emptyset$.