Thm 19.1, 2: Comparison of box and product topologies. Let \mathcal{B}_{α} be a basis for X_{α}

Basis for the box topology: $\left\{\Pi U_{\alpha} \mid U_{\alpha}\right.$ open in $\left.X_{\alpha}\right\}$

$$
\text { or }\left\{\Pi B_{\alpha} \mid B_{\alpha} \in \mathcal{B}_{\alpha}\right\}
$$

Basis for the product topology:
$\left\{\Pi U_{\alpha} \mid U_{\alpha}\right.$ open in X_{α},
$U_{\alpha}=X_{\alpha}$ for all but finitely many $\left.\alpha\right\}$
or $\left\{\Pi B_{\alpha} \mid B_{\alpha_{i}} \in \mathcal{B}_{\alpha_{i}}, i=1, \ldots, n\right.$,

$$
\left.B_{\alpha}=X_{\alpha} \text { for } \alpha \neq \alpha_{i}, i=1, \ldots, n\right\}
$$

Hence box topology is finer then the product topology
Thm 19.3: Let A_{α} be a subspace of X_{α}. Then ΠA_{α} is a subspace of ΠX_{α} if both products are given the box topology or if both products are given the product topology.

Thm 19.4: If X_{α} is Hausdorff for all α then ΠX_{α} is Hausdorff in both the box and product topologies.

HW p. 118: $3,5,6,7$
Thm 19.5: $\Pi \overline{A_{\alpha}}=\overline{\Pi A_{\alpha}}$ in both the box and product topologies.

Thm 19.6: Suppose $f_{\alpha}: X \rightarrow Y_{\alpha}$. Define $f: X \rightarrow \Pi_{\alpha \in A} Y_{\alpha}$ by $f(x)=\left(f_{\alpha}(x)\right)_{\alpha \in A}$. Let ΠX_{α} have the product topology. Then f is continuous is and only if f_{α} is continuous $\forall \alpha$

