19. The Product Topology.

Defn: Let J be an index set. Given a set X, a **J-tuple** of elements of X is a function $\mathbf{x}: J \to X$. The α th coordinate of $\mathbf{x} = x_{\alpha} = \mathbf{x}(\alpha)$.

Defn: Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of sets. Let $X=\cup_{{\alpha}\in J}A_{\alpha}$. The **Cartesian product** of $\{A_{\alpha}\}_{{\alpha}\in J}$, denoted by $\Pi_{{\alpha}\in J}A_{\alpha}$, is defined to the the set of all J-tuples $(x_{\alpha})_{{\alpha}\in J}$ of elements of X such that $x_{\alpha}\in A_{\alpha}$ for each ${\alpha}\in J$.

That is, it is the set of all functions $\mathbf{x}: J \to \bigcup_{\alpha \in J} A_{\alpha}$ such that $\mathbf{x}(\alpha) \in A_{\alpha} \forall \alpha \in J$.

Defn: The **box topology** on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the basis

 $\{\Pi_{\alpha\in J}U_{\alpha}\mid U_{\alpha} \text{ open in } X_{\alpha}\}.$

Defn: Let $S_{\alpha} = \{\pi_{\alpha}^{-1}(U) \mid U \text{ open in } X_{\alpha}\}$ The **product topology** on $\Pi_{\alpha \in J} X_{\alpha}$ is the topology generated by the subbasis $S = \bigcup_{\alpha \in J} S_{\alpha}$.