17. Closed Sets and Limit Points

Defn: The set A is **closed** iff X - A is open.

Thm 17.1: X be a topological space if and only if the following conditions hold:

(1) \emptyset , X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

Note arbitrary intersections of open sets need not be open. Example: $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) =$

Note arbitrary unions of closed sets need not be closed. Example: $\bigcup_{n=1}^{\infty} [\frac{1}{n}, 1 - \frac{1}{n}] =$

Thm 17.2: Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Thm 17.3: Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

Def: The interior of $A = Int A = A^0 = \bigcup_{U^{open} \subset A} U$

Def: The closure of $A = Cl \ A = \overline{A} = \bigcap_{A \subset F^{closed}} F$

Note: \overline{A} is the smallest closed set containing A.

Thm 17.4: Let Y be a subspace of $X, A \subset Y$. Let \overline{A} denote the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.

Defn: A intersects B if $A \cap B \neq \emptyset$

Thm 17.5: Let A be a subset of the topological space X.

(a) $x \in \overline{A}$ if and only if $(x \in U^{open} \text{ implies} U \cap A \neq \emptyset)$.

(b) $x \in \overline{A}$ if and only if $(x \in B$ where B is a basis element implies $B \cap A \neq \emptyset$).

Defn: U is a **neighborhood** of x if U is an open set containing x.