12. Topological Spaces

Defn: A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:
a.) $\emptyset, X \in \mathcal{T}$.
b.) $U_{\alpha} \in \mathcal{T}$ implies $\cup U_{\alpha} \in \mathcal{T}$
c.) $U_{i} \in \mathcal{T}$ implies $\cap_{i=1}^{n} U_{i} \in \mathcal{T}$

Defn: U is open if $U \in \mathcal{T}$
Ex 2a: The discrete topology on $X=\mathcal{P}(X)=$ set of all subsets of X.

Ex 2b: The indiscrete or trivial topology on $X=$ $\{\emptyset, X\}$.

Ex 3: The finite complement topology on $X=\mathcal{T}_{f}$ $=\{U \mid X-U$ is finite or $X-U=X\}$.

Ex 4: The countable complement topology on X $=\mathcal{T}_{c}=\{U \mid X-U$ is countable or $X-U=X\}$.

Defn: Suppose the \mathcal{T} and \mathcal{T}^{\prime} are two topologies on X such that $\mathcal{T} \subset \mathcal{T}^{\prime}$. Then \mathcal{T}^{\prime} is finer or larger than \mathcal{T} and \mathcal{T} is coarser or smaller than \mathcal{T}^{\prime}. If \mathcal{T}^{\prime} properly contains \mathcal{T}, then \mathcal{T}^{\prime} is strictly finer than \mathcal{T} and \mathcal{T} is strictly coarser than \mathcal{T}^{\prime}.

Defn: \mathcal{T} is comparable with \mathcal{T}^{\prime} if either $\mathcal{T} \subset \mathcal{T}^{\prime}$ or $\mathcal{T}^{\prime} \subset \mathcal{T}$.

13: Basis for a Topology
Defn: If X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that
(1) For each $x \in X$, there is at least one basis element B containing x.
(2) If $x \in B_{1} \cap B_{2}$ where $B_{1}, B_{2} \in \mathcal{B}$, then there exists $B_{3} \in \mathcal{B}$ such that $x \in B_{3} \subset B_{1} \cap B_{2}$.

The topology \mathcal{T} generated by a basis \mathcal{B} is defined as follows: U is open if and only if for all $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B \subset U$

Example 1a: The set of all open intervals in R is a basis for a topology on R (the standard topology).

Example 1b: The set of all open circular regions in R^{2} is a basis for a topology on R^{2} (the standard topology).

Example 2: The set of all open rectangular regions in R^{2} is a basis for a topology on R^{2} (the standard topology).

Note the basis in Example 1b and the basis in Example 2 both generated the same topology.

Example 3: $\{x \mid x \in X\}$ is a basis for the discrete topology on X.

Lemma 13.1: Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then $\mathcal{T}=$ set of all unions of elements of \mathcal{B}.

Lemma 13.2: Let X be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology on X.

Lemma 13.3: Let \mathcal{B} and \mathcal{B}^{\prime} be a basis for \mathcal{T} and \mathcal{T}^{\prime}, respectively, on X. Then the following are equivalent:
(1) \mathcal{T}^{\prime} is finer than \mathcal{T}.
(2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B^{\prime} \in \mathcal{B}^{\prime}$ such that $x \in B^{\prime} \subset B$.

Defn:
1.) $\mathcal{B}=\{(a, b) \mid a, b \in R, a<b\}$ is a basis for the standard topology on R.
2.) $\mathcal{B}^{\prime}=\{[a, b) \mid a, b \in R, a<b\}$ is a basis for the lower limit topology on R. When R has this topology, we denote it by R_{l}.
3.) Let $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in Z_{+}\right\}$.
$\mathcal{B}^{\prime \prime}=\mathcal{B} \cup\{(a, b)-K \mid a, b \in R, a<b\}$ is a basis for the K-topology on R. When R has this topology, we denote it by R_{K}.

Lemma 13.4: The topologies R_{l} and R_{K} are strictly finer than the standard topology, but they are not comparable with one another.

Definition: A subbasis \mathcal{S} for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the subbasis \mathcal{S} is defined to be the collection \mathcal{T} of all unions of finite intersections of elements of \mathcal{S}.

Lemma: If \mathcal{S} is a subbasis for a topology on X, then $\mathcal{B}=$ the set of all finite intersections of elements of \mathcal{S} is a basis for this topology.

HW p83: 4, 8

14: The Order topology
(p. 24) A relation $<$ on a set A is called an order relation (or a simple order or linear order) if it has the following properties:
(1) (Comparability) For every $x, y \in A$ for which $x \neq y$, either $x<y$ or $y<x$.
(2) (Nonreflexivity) For no $x \in A$ does the relation $x<x$ hold.
(3) (Transitivity) If $x<y$ and $y<z$, then $x<z$.

Defn: Let X be a set with a simple order relation. Assume that X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:
(1) All open intervals (a, b) in X.
(2) All intervals of the form $\left[a_{0}, b\right)$, where a_{0} is the smallest element (if any) of X.
(3) All intervals of the form $\left(a, b_{0}\right]$, where b_{0} is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X which is called the order topology.

Note: If X has no smallest element, there are no sets of type (2). If X has no largest element, there are no sets of type (3).

Ex. 0: The order topology on $(0,1) \cup\{5\}$
Ex. 1: The order topology on R is the standard topology on R.
Ex. 2: $R \times R$ in the dictionary order.
Ex. 3: Order topology on $Z_{+}=$discrete topology. Ex. 4: The order topology on $X=\{1,2\} \times Z_{+}$is NOT the discrete topology.

