12. Topological Spaces

Defn: A **topology** on a set X is a collection \mathcal{T} of subsets of X having the following properties:

a.) $\emptyset, X \in \mathcal{T}$.

b.) $U_{\alpha} \in \mathcal{T}$ implies $\cup U_{\alpha} \in \mathcal{T}$

c.) $U_i \in \mathcal{T}$ implies $\bigcap_{i=1}^n U_i \in \mathcal{T}$

Defn: U is open if $U \in \mathcal{T}$

Ex 2a: The discrete topology on $X = \mathcal{P}(X) = \text{set}$ of all subsets of X.

Ex 2b: The indiscrete or trivial topology on $X = \{\emptyset, X\}$.

Ex 3: The finite complement topology on $X = \mathcal{T}_f$ = { $U \mid X - U$ is finite or X - U = X}.

Ex 4: The countable complement topology on $X = \mathcal{T}_c = \{U \mid X - U \text{ is countable or } X - U = X\}.$

Defn: Suppose the \mathcal{T} and \mathcal{T}' are two topologies on X such that $\mathcal{T} \subset \mathcal{T}'$. Then \mathcal{T}' is **finer** or **larger** than \mathcal{T} and \mathcal{T} is **coarser** or **smaller** than \mathcal{T}' . If \mathcal{T}' properly contains \mathcal{T} , then \mathcal{T}' is **strictly finer** than \mathcal{T} and \mathcal{T} is **strictly coarser** than \mathcal{T}' .

Defn: \mathcal{T} is **comparable** with \mathcal{T}' if either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$.

13: Basis for a Topology

Defn: If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis** elements) such that

(1) For each $x \in X$, there is at least one basis element B containing x.

(2) If $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

The topology \mathcal{T} generated by a basis \mathcal{B} is defined as follows: U is open if and only if for all $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B \subset U$ Example 1a: The set of all open intervals in R is a basis for a topology on R (the standard topology).

Example 1b: The set of all open circular regions in R^2 is a basis for a topology on R^2 (the standard topology).

Example 2: The set of all open rectangular regions in R^2 is a basis for a topology on R^2 (the standard topology).

Note the basis in Example 1b and the basis in Example 2 both generated the same topology.

Example 3: $\{x \mid x \in X\}$ is a basis for the discrete topology on X.

Lemma 13.1: Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then $\mathcal{T} =$ set of all unions of elements of \mathcal{B} .

Lemma 13.2: Let X be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology on X.

Lemma 13.3: Let \mathcal{B} and \mathcal{B}' be a basis for \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

(1) \mathcal{T}' is finer than \mathcal{T} .

(2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Defn:

1.) $\mathcal{B} = \{(a, b) \mid a, b \in R, a < b\}$ is a basis for the standard topology on R.

2.) $\mathcal{B}' = \{[a,b) \mid a,b \in R, a < b\}$ is a basis for the lower limit topology on R. When R has this topology, we denote it by R_l .

3.) Let $K = \{\frac{1}{n} \mid n \in Z_+\}$. $\mathcal{B}'' = \mathcal{B} \cup \{(a, b) - K \mid a, b \in R, a < b\}$ is a basis for the K-topology on R. When R has this topology, we denote it by R_K .

Lemma 13.4: The topologies R_l and R_K are strictly finer than the standard topology, but they are not comparable with one another.

Definition: A subbasis S for a topology on X is a collection of subsets of X whose union equals X. The **topology generated by the subbasis** S is defined to be the collection \mathcal{T} of all unions of finite intersections of elements of S.

Lemma: If \mathcal{S} is a subbasis for a topology on X, then \mathcal{B} = the set of all finite intersections of elements of \mathcal{S} is a basis for this topology.

HW p83: 4, 8

14: The Order topology

(p. 24) A relation < on a set A is called an **order relation** (or a **simple order** or **linear order**) if it has the following properties:

(1) (Comparability) For every $x, y \in A$ for which $x \neq y$, either x < y or y < x.

(2) (Nonreflexivity) For no $x \in A$ does the relation x < x hold.

(3) (Transitivity) If x < y and y < z, then x < z.

Defn: Let X be a set with a simple order relation. Assume that X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.

(3) All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X.

The collection \mathcal{B} is a basis for a topology on X which is called the **order topology**.

Note: If X has no smallest element, there are no sets of type (2). If X has no largest element, there are no sets of type (3).

Ex. 0: The order topology on $(0,1) \cup \{5\}$

Ex. 1: The order topology on R is the standard topology on R.

Ex. 2: $R \times R$ in the dictionary order.

Ex. 3: Order topology on Z_+ = discrete topology.

Ex. 4: The order topology on $X = \{1, 2\} \times Z_+$ is NOT the discrete topology.