
nth order LINEAR differential equation:

Thm 2.4.1: If p and g are continuous on (a, b) and the
point t0 ∈ (a, b), then there exists a unique function y =
ϕ(t) defined on (a, b) that satisfies the following initial
value problem:

y′ + p(t)y = g(t), y(t0) = y0.

Thm 3.2.1: If p : (a, b) → R, q : (a, b) → R, and g :
(a, b) → R are continuous and a < t0 < b, then there
exists a unique function y = ϕ(t), ϕ : (a, b) → R that
satisfies the initial value problem

y′′ + p(t)y′ + q(t)y = g(t),

y(t0) = y0, y′(t0) = y1

Theorem 4.1.1: If pi : (a, b) → R, i = 1, ..., n and
g : (a, b) → R are continuous and a < t0 < b, then there
exists a unique function y = ϕ(t), ϕ : (a, b) → R that
satisfies the initial value problem

y(n) + p1(t)y
(n−1) + ...+ pn−1(t)y

′ + pn(t)y = g(t),

y(t0) = y0, y′(t0) = y1, ..., y(n−1)(t0) = yn−1

Proof: We proved the case n = 1 using an integrating
factor. When n > 1, see more advanced textbook.
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Example 4 from ch 2: (t2−1)y′+ (t+1)y
t−4 = ln|t|, y(3) = 6

This equation is linear, so we know that it has a unique
solution as long as p and g are continuous.

(t2 − 1)y′ + (t+1)y
t−4 = ln|t| ⇒ 1y′ + (t+1)

(t−4)(t2−1)y = ln|t|
t2−1

Note p(t) = (t+1)
(t−4)(t2−1) = (t+1)

(t−4)(t+1)(t−1) = 1
(t−4)(t−1) is

continuous for all t ̸= 1, 4

Note g(t) = ln|t|
t2−1 = ln|t|

(t+1)(t−1) is continuous for all

t ̸= −1, 0, 1

Thus ty′ − y = 1, y(t0) = y0 has a unique solution as
long as t0 ̸= −1, 0, 1, 4.

Since for IVP, (t2 − 1)y′ + (t+1)y
t−4 = ln|t|, y(3) = 6,

t0 = 3, this IVP has a unique solution which by Thm
4.1.1 is valid on the interval (1, 4).

NOTE: Theorem 4.1.1 is VERY useful in the real world.
Suppose you can’t solve the linear differential equation
directly. You may be able to instead approximate the
solution – see for example ch 5 series solution (guess
y =

∑
anx

n), which we won’t cover in this class or
MATH:3800 Elementary Numerical Analysis.

But your approximation is not of much use unless you
know where your approximation is valid.

2



To solve ay′′ + by′ + cy = g(t)

1.) Easily solve homogeneous DE: ay′′ + by′ + cy = 0

y = ert ⇒ ar2 + br + c = 0 ⇒ y = c1ϕ1 + c2ϕ2 for
homogeneous solution (see sections 3.1, 3.3, 3.4, 4.1).

2.) More work: Find one solution to ay′′+by′+cy = g(t)
(see sections 3.5 = 4.3, 3.6 = 4.4)

If y = ψ(t) is a soln to the nonhomogeneous DE, then
general soln to ay′′ + by′ + cy = g(t) is

y = c1ϕ1 + c2ϕ2 + ψ

Check: aϕ′′1 + bϕ′1 + cϕ1 = 0

aϕ′′2 + bϕ′2 + cϕ2 = 0

aψ′′ + bψ′ + cψ = g(t)

Note you can break step 2 into simpler parts. For example:

To solve ay′′ + by′ + cy = g1(t) + g2(t)

1.) Solve ay′′ + by′ + cy = 0 ⇒ y = c1ϕ1 + c2ϕ2 for
homogeneous solution.

2a.) Solve ay′′ + by′ + cy = g1(t) ⇒ y = ψ1

2b.) Solve ay′′ + by′ + cy = g2(t) ⇒ y = ψ2

General solution to ay′′ + by′ + cy = g1(t) + g2(t) is

y = c1ϕ1 + c2ϕ2 + ψ1 + ψ2
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When does the following IVP have unique sol’n:

IVP: ay′′ + by′ + cy = g(t), y(t0) = y0, y
′(t0) = y1.

Suppose y = c1ϕ1(t) + c2ϕ2(t) + ψ(t) is a solution to

ay′′ + by′ + cy = g(t). Then y′ = c1ϕ
′
1(t) + c2ϕ

′
2(t) + ψ′(t)

y(t0) = y0: y0 = c1ϕ1(t0) + c2ϕ2(t0) + ψ(t0)

y′(t0) = y1: y1 = c1ϕ
′
1(t0) + c2ϕ

′
2(t0) + ψ′(t0)

To find IVP solution, need to solve above system of two
equations for the unknowns c1 and c2.

Note the IVP has a unique solution if and only if the
above system of two equations has a unique solution for
c1 and c2.

Note that in these equations c1 and c2 are the unknowns.

Let b0 = y0 − ψ(t0) and b1 = y1 − ψ′(t0)

We can translate this linear system of equations into matrix
form:

c1ϕ1(t0) + c2ϕ2(t0) = b0
c1ϕ

′
1(t0) + c2ϕ

′
2(t0) = b1

⇒
[
ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

] [
c1
c2

]
=

[
b0
b1

]
Note this equation has a unique solution if and only if

det

[
ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

]
=

∣∣∣∣ϕ1 ϕ2
ϕ′1 ϕ′2

∣∣∣∣ = ϕ1ϕ
′
2 − ϕ′1ϕ2 ̸= 0
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Definition: The Wronskian of two differential functions, ϕ1
and ϕ2 is

W (ϕ1, ϕ2) = ϕ1ϕ
′
2 − ϕ′1ϕ2 =

∣∣∣∣ϕ1 ϕ2
ϕ′1 ϕ′2

∣∣∣∣
Examples:

1.) W(cos(t), sin(t)) =

∣∣∣∣ cos(t) sin(t)
−sin(t) cos(t)

∣∣∣∣
= cos2(t) + sin2(t) = 1 > 0.

2.) W(edtcos(nt), edtsin(nt)) =∣∣∣∣ edtcos(nt) edtsin(nt)
dedtcos(nt)− nedtsin(nt) dedtsin(nt) + nedtcos(nt)

∣∣∣∣
=edtcos(nt)(dedtsin(nt)+nedtcos(nt))−edtsin(nt)(dedtcos(nt)−nedtsin(nt))

=e2dt[cos(nt)(dsin(nt)+ncos(nt))−sin(nt)(dcos(nt)−nsin(nt))]

=e2dt[dcos(nt)sin(nt)+ncos2(nt)−dsin(nt)cos(nt)+nsin2(nt)])

= e2dt[ncos2(nt) + nsin2(nt)]

= ne2dt[cos2(nt) + sin2(nt)] = ne2dt > 0 for all t.
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4.1: General Theory of nth Order Linear Eqns

When does the following IVP have a unique soln:

IVP: y(n)+p1(t)y
(n−1)+...+pn−1(t)y

′+pn(t)y = g(t),

y(t0) = y0, y
′(t0) = y1, ..., y

(n−1)(t0) = yn−1.

Suppose y = c1ϕ1(t) + c2ϕ2(t) + ... + cnϕn(t) + ψ(t) is
the general solution to DE. Then

y(t0) = y0:

y0 = c1ϕ1(t0) + c2ϕ2(t0) + ...+ cnϕn(t0) + ψ(t0)

y′(t0) = y1:

y1 = c1ϕ
′
1(t0) + c2ϕ

′
2(t0) + ...+ cnϕ

′
n(t0) + ψ′(t0)

.

.

.

y(n−1)(t0) = yn−1:

yn−1 = c1ϕ
(n−1)
1 (t0) + c2ϕ

(n−1)
2 (t0)

+...+ cnϕ
(n−1)
n (t0) + ψ(n−1)(t0)

To find IVP solution, need to solve above system of
equations for the unknowns ci, i = 1, ..., n.

Note the IVP has a unique solution if and only if the
above system of equations has a unique solution for the
ci’s.
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Let bk = yk − ψ(k)(t0). Note that in these equations
the ci are the unknowns

Translating this linear system of eqns into matrix form:
ϕ1(t0) ϕ2(t0) ... ϕn(t0)
ϕ′1(t0) ϕ′2(t0) ... ϕ′n(t0)

.

.

.
ϕ
(n−1)
1 (t0) ϕ

(n−1)
2 (t0) ... ϕ

(n−1)
n (t0)




c1
c2
.
.
.
cn

 =


b0
b1
.
.
.

bn−1


Note this equation has a unique solution if and only if

det


ϕ1(t0) ϕ2(t0) ... ϕn(t0)
ϕ′1(t0) ϕ′2(t0) ... ϕ′n(t0)

.

.

.
ϕ
(n−1)
1 (t0) ϕ

(n−1)
2 (t0) ... ϕ

(n−1)
n (t0)

 ̸= 0

Defn: The Wronskian of the functions, ϕ1, ϕ2,..., ϕn is

W (ϕ1, ϕ2, ..., ϕn) = det


ϕ1(t) ϕ2(t) ... ϕn(t)
ϕ′1(t) ϕ′2(t) ... ϕ′n(t)

.

.

.
ϕ
(n−1)
1 (t) ϕ

(n−1)
2 (t) ... ϕ

(n−1)
n (t)


Note: {ϕ1, ϕ2, ..., ϕn} is a linearly independent set of fns

if W (ϕ1, ϕ2, ..., ϕn)(t0) ̸= 0 for some t0
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In other words if ϕi are homogeneous solutions to an
nth order linear DE,

y(n) + p1(t)y
(n−1) + ...+ pn−1(t)y

′ + pn(t)y = 0

and W (ϕ1, ϕ2, ..., ϕn)(t0) ̸= 0 for some t0.

iff {ϕ1, ϕ2, ..., ϕn} is a basis for the solution set of this
homogeneous equation.

In other words any homogeneous solution can be written
as a linear combination of these basis elements:

y = c1ϕ1 + ...+ cnϕn

Moreover, the general soln to the non-homogeneous eqn

y(n) + p1(t)y
(n−1) + ...+ pn−1(t)y

′ + pn(t)y = g(t)

is just the translated version of the general homogeneous
solution:

y = c1ϕ1 + ...+ cnϕn + ψ

where ψ is a non-homogeneous solution.

Abel’s theorem: if ϕi are homogeneous solutions to an
nth order linear DE,

y(n) + p1(t)y
(n−1) + ...+ pn−1(t)y

′ + pn(t)y = 0

then W (ϕ1, ϕ2, ..., ϕn)(t) = ce−
∫

p1(t)dt for some con-
stant c
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ϕ1, ..., ϕn are linearly independent

iff

c1ϕ1(t) + ... + cnϕn(t) = 0 has a unique solution (that
works for all t).

iff

the following system of equations has a unique solution

c1ϕ1(t) + c2ϕ2(t) + ...+ cnϕn(t) = 0

c1ϕ
′
1(t) + c2ϕ

′
2(t) + ...+ cnϕ

′
n(t) = 0

.

.

.

c1ϕ
(n−1)
1 (t) + c2ϕ

(n−1)
2 (t) + ...+ cnϕ

(n−1)
n (t) = 0

iff the following system of equations has a unique sol-
ution

ϕ1(t) ϕ2(t) ... ϕn(t)
ϕ′1(t) ϕ′2(t) ... ϕ′n(t)

.

.

.
ϕ
(n−1)
1 (t) ϕ

(n−1)
2 (t) ... ϕ

(n−1)
n (t)




c1
c2
.
.
.
cn

 =


0
0
.
.
.
0


Note this equation has a unique solution if and only if
for some t0
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det


ϕ1(t0) ϕ2(t0) ... ϕn(t0)
ϕ′1(t0) ϕ′2(t0) ... ϕ′n(t0)

.

.

.
ϕ
(n−1)
1 (t0) ϕ

(n−1)
2 (t0) ... ϕ

(n−1)
n (t0)

 ̸= 0

iff W (ϕ1, ϕ2, ..., ϕn)(t0) ̸= 0,

Example: Determine if {1 + 2t, 5 + 4t2, 6 − 8t + 8t2}
are linearly independent:

Method 1:
Solve c1(1 + 2t) + c2(5 + 4t2) + c3(6− 8t+ 8t2) = 0

Or equivalently,

solve c1

 1
2
0

+ c2

 5
0
4

+ c3

 6
−8
8

 =

 0
0
0



Or equivalently, solve

 1 5 6
2 0 −8
0 4 8

 c1c2
c3

 =

 0
0
0


Method 2: Check the Wronskian

det

 1 + 2t 5 + 4t2 6− 8t+ 8t2

2 8t −8 + 16t
0 8 16


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