nth order LINEAR differential equation:

Thm 2.4.1: If p and ¢ are continuous on (a,b) and the
point tg € (a,b), then there exists a unique function y =

¢(t) defined on (a,b) that satisfies the following initial
value problem:

y' +p(t)y =g(t), y(to) = yo-

Thm 3.2.1: If p: (a,b) - R, q : (a,b) - R, and g :
(a,b) — R are continuous and a < ty < b, then there
exists a unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the initial value problem

y" + o)y +q(t)y = g(b),
y(to) =wo, ¥'(to) =1
Theorem 4.1.1: If p; : (a,b) > R, i=1,...,n and
g : (a,b) — R are continuous and a < ty < b, then there

exists a unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the initial value problem

Y™ 4+ o Oy + L p_1 ()Y + pn(t)y = g(t),
y(to) = vo, ¥ (to) =uy1, ..\ y(n_l)(to) = Yn—1

Proof: We proved the case n = 1 using an integrating
tactor. When n > 1, see more advanced textbook.



Example 4 from ch 2: (t —1)y’ + % = In|t|, y(3) =6

This equation is linear, so we know that it has a unique
solution as long as p and g are continuous.

t+1 t+1 In|t
(2 =)y + E =it = 1y + =y = 2

(t+1) (t+1) 1
Note p(t) = Gop@e—1 = THEDE) = E=DE=D |
continuous for all ¢t £ 1,4
Note g(t) = ln|t =G +l17)L|(€f|—1) is continuous for all
t#—-1,0,1

Thus ty' —y = 1, y(tp) = yo has a unique solution as
long as tg = —1,0, 1, 4.

Since for TVP, (12 — 1)y’ + U — injt|, y(3) = 6,
to = 3, this IVP has a umque solution which by Thm
4.1.1 is valid on the interval (1,4).

NOTE: Theorem 4.1.1 is VERY useful in the real world.
Suppose you can’t solve the linear differential equation
directly. You may be able to instead approximate the
solution — see for example ch 5 series solution (guess

y = Y, apx™), which we won’t cover in this class or
MATH:3800 Elementary Numerical Analysis.

But your approximation is not of much use unless you
know where your approximation is valid.



To solve ay” + by’ + cy = g(t)

1.) Easily solve homogeneous DE: ay” + by’ + cy = 0

Yy = et = ar*+br+c=0= Yy = c1¢1 + ca¢2 for
homogeneous solution (see sections 3.1, 3.3, 3.4, 4.1).

2.) More work: Find one solution to ay” +by’ +cy = g(t)
(see sections 3.5 = 4.3, 3.6 = 4.4)

If y = 4(t) is a soln to the nonhomogeneous DE, then
general soln to ay” 4+ by’ + cy = g(t) is

Y = Cc1P1 + cao + U

Check: a¢y + bd| + cp1 =0
apy + bol, + cpo = 0
a)” + by’ + cyp = g(t)

Note you can break step 2 into simpler parts. For example:|j

To solve ay” + by’ + cy = g1(t) + g2(t)

1.) Solve ay” +by' +cy=0 = y=ci¢1 + ca¢ for
homogeneous solution.

2a.) Solve ay” +by +cy=g1(t) = y=1
2b.) Solve ay” + by’ +cy =g2(t) = y =19

General solution to ay” + by’ + cy = g1(t) + g2(t) is
Yy =c1¢1 + 292 + Y1 + 2



When does the following IVP have unique sol’n:

IVP: ay” + by’ + cy = g(¢), y(to) = yo, ¥'(to) = y1.

Suppose y = c1¢1(t) + capa(t) + () is a solution to
ay” + by’ +cy = g(t). Then y’' = c1¢](f) + cads(t) + ¥'(1)

y(to) =yo: Yo = c1¢1(fo) + c2¢2(to) + ¥ (to)

y'(to) =vy1: y1 = 1 (o) + cady(to) + ¥’ (to)

To find IVP solution, need to solve above system of two
equations for the unknowns c; and cs.

Note the IVP has a unique solution if and only if the
above system of two equations has a unique solution for
c1 and cs.

Note that in these equations c¢; and ¢y are the unknowns.

Let bo = Yo — @D(to) and bl =Y — @Dl(to)

We can translate this linear system of equations into matrix
form:

MG ] | R

Note this equation has a unique solution if and only if

d1(to) o2(to) | _|o1 D2 _ . .,
det[aﬁ’l(to) as;(to)]‘ g ¢p| = NPT AR 70




Definition: The Wronskian of two differential functions, ¢4
and ¢ is

W(61,00) = brdh — diga = | 5
Examples:
1) Wi(cos(t), sin(t)) = —C;)ZEZ) ZE% ‘
= cos?(t) + sin?(t) = 1 > 0.

2.) W(edcos(nt), eYsin(nt)) =
e cos(nt) e sin(nt)
de?tcos(nt) — ne“sin(nt) dedtsin(nt) + nettcos(nt)
=e¥cos(nt)(de? sin(nt)+netcos(nt))—e sin(nt)(de? cos(nt)—ne®t sin(n
— 62 [cos(nt) (dsin(nt)+ncos(nt))—sin(nt)(dcos(nt)—nsin(nt))]
—e29 [dcos(nt)sin(nt)+ncos? (nt)—dsin(nt)cos(nt)+nsin?(nt)])

= e2ncos?(nt) + nsin?(nt)]

= ne?d[cos?(nt) + sin?(nt)] = ne?d > 0 for all t.



4.1: General Theory of nth Order Linear Eqns

When does the following IVP have a unique soln:

IVP: y™ +p; () y "D+ 4 pa_1 ()Y +pu D)y = g(t),
y(to) = yo, ¥ (to) = y1, -, y" "V (t0) = Yn—1.
Suppose y = c1¢1(t) + cada(t) + ... + cadn(t) +(t) is

the general solution to DE. Then

y(to) = yo:
Yo = c191(to) + c202(to) + ... + cndnlto) + Y(to)

y'(to) = y1:
y1 = c197(to) + cadp(to) + ... + ), (to) + ' (to)

y<n_1)(t0) = Yp—1-
Yn1 = 10\ V(to) + 2¢<“ ”( to)

To find IVP solution, need to solve above system of
equations for the unknowns ¢;, 1 = 1, ..., n.

Note the IVP has a unique solution if and only if the
above system of equations has a unique solution for the
c;’s.



Let by, = yr, — ¢(k)(t0). Note that in these equations
the ¢; are the unknowns

Translating this linear system of eqns into matrix form:

~ $1(to) ¢2(to) - @alto) T[] T bo 7
¢1 (to) Po(to) o 9n(to) Co b1
V) V() e ¢ V)] Len) Lo

Note this equation has a unique solution if and only if

" o1(to) ¢2(to) o dnlto) T
91 (to) ¢o(to) o @ (to)
det ' =0
6 V) ¢ D) o D (k).
Defn: The Wronskian of the functions, ¢1, ¢a,..., ¢, is
" o1(t) P2(t) o Pnlt) T
¢1(t) Po(t) o (1t

W (o1, @2, ..., 0n) = det

n—1 n—.l n—1
R el O B el () N i (O

Note: {¢1, ¢2, ..., ¢, } is a linearly independent set of fns
if W(1, @2, ..., ¢n)(to) # 0 for some tg



In other words if ¢; are homogeneous solutions to an
nth order linear DE,

y™ 4+ pr(By Y + 4 pao1 (DY + pa(t)y =0
and W (1, pa, ..., on)(tg) # 0 for some tg.

iff {¢p1,p2,...,0n} is a basis for the solution set of this
homogeneous equation.

In other words any homogeneous solution can be written]j
as a linear combination of these basis elements:

Yy=c101+ ... + c,on

Moreover, the general soln to the non-homogeneous eqn

Y™+ p1 )y + L+ pa1 ()Y + )y = g(t)

is just the translated version of the general homogeneousjj
solution:

Yy = 61§b1 + +Cn§bn+w

where 1 is a non-homogeneous solution.

Abel’s theorem: if ¢; are homogeneous solutions to an
nth order linear DE,

y(™) 4+ py (t)y(”_l) + e + D1 ()Y +pn(H)y =0

then W (o1, pa, ..., 0n)(t) = ce J PO (o1 some con-
stant c



o1, ..., Oy, are linearly independent

iff
c191(t) + ... + cndn(t) = 0 has a unique solution (that
works for all t).

iff
the following system of equations has a unique solution
c191(t) + c2da(t) + ... + cnon(t) =0
191 (t) + cagh(t) + ... + ey (t) = 0

1"V (1) + el V(@) + o+ enpl TP () = 0

iff the following system of equations has a unique sol-
ution

" 91(1) P2(t) .. Pu(t) 1 Tar] 0"
o1 (t) oo(t) ... @L(1) Co 0
D) Dy e V] e Lo

Note this equation has a unique solution if and only if
for some tg



" ¢1(to) P2(to) Pn(to) T
1 (to) P5(to) »(to)
det =0
V() 68V (k) e 0V o)

iff W(¢17¢27"'7¢n)(t0) # 07

Example: Determine if {1 + 2,5 + 4t%,6 — 8t + 8t?}
are linearly independent:

Method 1:
Solve c1(1 + 2t) + co(5 + 4t2) + c3(6 — 8t + 8t2) =0
Or equivalently, (1] (5] 6 0]
solvecy |2 +co |0 +c3 | =8| =10
| 0 |4 - 8 | 0
(1 5 6| [ca| [O]
Or equivalently, solve |2 0 —8 co| =10
_O 4 8 i _(33_ _O_

Method 2: Check the Wronskian

(1 +2t 5+4t2 6 — 8t + 8t2
det 2 8t —8 + 16t
0 8 16




