Summary of sections 3.1, 3, 4: Solve linear homogeneous|j
2nd order DE with constant coefficients.

Solve ay” + by’ +cy = 0. Educated guess y = €', then

ar?e™ + bre™ 4 ce™ = 0 implies ar® + br + c =0,

Suppose r = r1, 79 are solutions to ar? +br +c =0
—b+tvb2—4ac
2a

1, T2 =

If 1 # 79, then b% — 4ac # 0. Hence a general solution is
y = c1e"t + che’??

If b® — 4ac > 0, general solution is y = c1e"'! 4 coe™?.

If b> — 4ac < 0, change format to linear combination of
real-valued functions instead of complex valued functions
by using Euler’s formula.

d dt

general solution is y = c1e®cos(nt) + cae sin(nt) where

r=d=+in

If ¥ — 4ac = 0, r; = 72, so need 2nd (independent)
solution: te™?

Hence general solution is y = cje™t + cote™?.

Initial value problem: use y(to) = yo, ¥'(to) = y{, to solve
for c1, co to find unique solution.



Examples:

Ex 1: Solve 3 — 3y’ — 4y = 0, y(0) =1, 4/(0) = 2.

If y = €™, then v/ = re™ and y"” = r?e".

rle’ — 3re’ — 4e"t = ()

r?2 —3r —4 = 0 implies (r —4)(r+1) = 0. Thus r = 4, —1

Hence general solution is y = c1e*! + coe™?

Solution to IVP:
Need to solve for 2 unknowns, ¢; & co; thus need 2 eqns:

y=cret +coe”t,  y(0)=1 implies 1=rc;+co

y' = dciet —coe™t, 9/ (0) =2 implies 2 = 4c¢; — ¢

Thus 3 = H¢; & hence ¢ = % and co =1—c1 = 1—% :%

—1

Thus IVP soln: y = %€4t + Ze

I\

Ex 2: Solve vy — 3y’ + 4y = 0.

y = e"t implies 7* — 3r + 4 = 0 and hence

3t4/(—3)2—4(1)(4) 0—16 _ 3 , .
5 = j: — 5 :l: 1

DO
(S
J

T =

<IS

Hence general sol'n is y = ¢re3tcos(%Lt) + cze%tsin(gt)

Ex 3: ¢/ — 6y’ +9y = 0 implies r? —6r+9 = (r —3)2 =0
Repeated root, r = 3 implies
general solution is y = c1e3! 4 coted?



So why did we guess y = "7

Goal: Solve linear homogeneous 2nd order DE with con-
stant coefficients,
ay” + by’ + cy = 0 where a, b, ¢ are constants

Standard mathematical technique: make up simpler prob-Jj
lems and see if you can generalize to the problem of inter-
est.

Ex: linear homogeneous 1rst order DE: v + 2y =0

integrating factor u(t) = o 2t _ o2t

y/€2t e 262ty — 0
(e**y)’ = 0. Thus [(e**y)'dt = [ 0dt. Hence e*'y = C
So y = Ce %,

Thus exponential function could also be a solution to a
linear homogeneous 2nd order DE

Ex: Simple linear homog 2nd order DE y” + 2y’ = 0.

Let v = ¢/, then v/ = ¢”

y" + 2y’ = 0 implies v’ + 2v = 0 implies v = e?.

Thus v =9 = ZZZ—ZZ = Ce 2. Hence dy = Ce™?!dt and

Yy = cle_% -+ Co.



Yy = 016_2t + Co.
Note 2 integrations give us 2 constants.

Note also that the general solution is a linear combination
of two solutions:

2

Let ¢; = 1, co = 0, then we see, y(t) = ¢! is a solution.

Let ¢; =0, co = 1, then we see, y(t) = 1 is a solution.

The general solution is a linear combination of two sol-

utions:
y = cre ?t + co(1).

Recall: you have seen this before:
Solve linear homogeneous matrix equation Ay = 0.

The general solution is a linear combination of linearly
independent vectors that span the solution space:
Y =(C1Vvi —+ ...CnVn

FYI: You could see this again:

Math 4050: Solve homogeneous linear recurrance relation
Ty — Lyl — Tp—o = 0 where 1 = 1 and o = 1.

Fibonacci sequence: x,, = Ty,—1 + Tpn—2

1,1,2, 3,5, 8, 13, 21, ...

Note x,, = &5(12\/5)71 _ jg(l—Qﬁ)n



Proof: x,, = x,,—1 + x,,—o implies x,, — ;.1 — Tpp—2 =0

Suppose z,, = r". Then z,,_1 =r""! and z,,_o = "2

Then0 =2, — T, 1 — Tp_o =77 — "1 —pn=2

Thus " 2(r?* —r — 1) = 0.

Thus either r =0 or r = 1i\/1_;l(1)(_1) = 1i2\/5

Thus z,, =0, x, = (%) and f, = (1_\/5)
are 3 different sequences that satisty the

homog linear recurrence relation: z,, — x,_1 — T,_2 = 0.
145\ 1-v5\ : :

Hence z,, = ¢; (JFT) + o (_T) also satisfies this

homogeneous linear recurrence relation.

Suppose the initial conditions are x1 =1 and x5 =1

Then forn =1: ;1 =1 implies ¢; +¢c5 =1

For n = 2: x5 = 1 implies ¢; (#) + co <#> =1

We can solve this for ¢; and ¢y to determine that

T, = \}5(1—1—2\/5)11_ 1 (1—\/5)n



Existence and Uniqueness for LINEAR DEs.
Homogeneous:
y" + iy - pa1 ()Y pa(t)y = 0
Non-homogeneous: g(t) # 0
g™ +p1 ()Y 4 pn 1 (DY + pa(t)y = 9(t)
1st order LINEAR differential equation:

Thm 2.4.1: If p : (a,b) - R and g : (a,b) — R are
continuous and a < ty < b, then there exists a unique
function y = ¢(t), ¢ : (a,b) — R that satisfies the

IVP: o/ + p(t)y = g(t), y(to) = yo

Thm: If y = ¢1(¢) is a solution to homogeneous equation,
y' 4+ p(t)y = 0, then y = c¢1(t) is the general solution to
this equation.

If in addition y = () is a solution to non-homogeneous
equation, ' + p(t)y = g(t), then y = co1(t) + ¥ (¢) is the
general solution to this equation.

Partial proof: y = ¢1(t) is a solution to y' + p(t)y = 0
implies

Thus y = c¢1(t) is a solution to y" + p(t)y = 0 since
y = 1(t) is a solution to ¥y’ + p(t)y = g(t) implies

Thus y = co1(t) + ¥ (t) is a solution to y' + p(t)y = g(t)
since



2nd order LINEAR differential equation:

Thm 3.2.1: If p: (a,b) - R, q¢ : (a,b) - R, and g :
(a,b) — R are continuous and a < ty < b, then there
exists a unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the initial value problem
y" + @)y +a)y = g(t),
y(to) = Yo,
y'(to) = yo

Thm 3.2.2: If ¢1 and ¢- are two solutions to a homogeneous|
linear differential equation, then c;¢1 4+ co¢5 is also a sol-
ution to this linear differential equation.

Proof of thm 3.2.2:

Since y(t) = ¢;(t) is a solution to the linear homogeneous
differential equation y"” + py’ + qy = 0 where p and ¢ are
functions of ¢ (note this includes the case with constant
coefficients), then

Claim: y(t) = c1¢1(t) + cap2(t) is also a solution to y” +
py +qy =0

Pf of claim:



Second order differential equation:

Linear equation with constant coefficients:
If the second order differential equation is

ay” +by" +cy =0,

then y = €' is a solution

Need to have two independent solutions.

Solve the following IVPs:

L) y" =6y +9y =0 y(0) =1,
2.) 4y —y' +2y=0 y(0) = 3,
3.) 4y + 4y +y =0 y(0) = 6,

1) 2y —2y =0 y(0) = 5,

y'(0) =2
y'(0) =4
y'(0) =7
y'(0) =9



Summary of sections 3.1, 3, 4: Solve linear homogeneous|j
2nd order DE with constant coefficients.

Solve ay” + by’ +cy = 0. Educated guess y = €', then

ar?e™ + bre™ 4 ce™ = 0 implies ar® + br + c =0,

Suppose r = r1, 79 are solutions to ar? +br +c =0
—b+tvb2—4ac
2a

1, T2 =

If 1 # 79, then b% — 4ac # 0. Hence a general solution is
y = c1e"t + che’??

If b® — 4ac > 0, general solution is y = c1e"'! 4 coe™?.

If b> — 4ac < 0, change format to linear combination of
real-valued functions instead of complex valued functions
by using Euler’s formula.

d dt

general solution is y = c1e®cos(nt) + cae sin(nt) where

r=d=+in

If ¥ — 4ac = 0, r; = 72, so need 2nd (independent)
solution: te™?

Hence general solution is y = cje™t + cote™?.

Initial value problem: use y(to) = yo, ¥'(to) = y{, to solve
for c1, co to find unique solution.



Derivation of general solutions:

If b — 4ac > 0 we guessed e"' is a solution and noted
that any linear combination of solutions is a solution to
a homogeneous linear differential equation.

Section 3.3: If b — 4ac < 0, :

Changed format of y = cje™? + c9e™? to linear combi-
nation of real-valued functions instead of complex valued
functions by using Euler’s formula:

et = cos(t) + isin(t)

Hence eldm)t = edteint — edt[cos(nt) + isin(nt)]
Let ri =d+1tn, r9 =d—1in

y = c1e"t + coe’??

= c1e%[cos(nt) + isin(nt)] + cae?[cos(—nt) + isin(—nt)]

= crecos(nt)+icie sin(nt)+cae? cos(nt)—icoe sin(nt)|j
=(c1 + c2)ecos(nt) +i(c; — ca)e¥sin(nt)

= kie¥cos(nt) + koetsin(nt)




Section 3.4: If b* — 4ac = 0, then | = ry.

Hence one solution is y = €™! Need second solution.

If y = €™ is a solution, y = ce™ is a solution.

How about y = v(t)e"*?
"(t)e™ + v(t)re™
"(t)e"t "(t)re"t + ' (t)re™ + v(t)r?e"

_|_
=" (t)e™ + 20" (t)re™ + v(t)riem

ay’ + by’ +cy =0
a(v”e™ 4+ 2v're"™ + vr2e™) + b(v'e™ 4+ vre™) + cve™

=0
a(v” (t) + 20 (t)r + v(t)r?) + b(v'(t) +

v(t)r) +cv(t) =0
V" (t) + 2av’ (t)r + av(t)r? + bv' (t) + bv(t)r + cv(t)

=0
v (t) + (2ar + b)v' (t) +

+ (ar? +br + c)v(t) =0
v (t) + (2a(52) + b)v'(t) + 0 =0
since ar? +br +c=0and r = =2
av” (t) + (=b+b)v'(t) = 0.

2a
Thus av”(t) = 0.
Hence v"(t) = 0 and v'(t) = k1 and v(t) = kit + ko

Hence v(t)e™! = (kit + ko)e™! is a soln

Thus te™'? is a nice second solution.

Hence general solution is y = cje™?t + cote™?



Solve: ¥ +y =0, y(0) = —1, ' (0) = -3

r? + 1 =0 implies 7* = —1. Thus r = +i.

Since r = 0+ 11, y = kicos(t) + kasin(t).

Then y' = —kysin(t) + kacos(t)

y(0) = —1: —1 = ky1cos(0) + kosin(0) implies —1 = k4
y'(0) = —3: —3 = —ky5in(0) + kocos(0) implies —3 = ko

Thus IVP solution: y = —cos(t) — 3sin(t)

When does the following IVP have unique sol’n:
IVP: ay” + by’ + cy = 0, y(to) = yo, ¥ (to) = 1.

Suppose y = c101(t) + ca¢2(t) is a solution to
ay’ + by + cy = 0. Then y' = c1¢](t) + cadh(t)

Y(to) = yo: Yo = c191(to) + ca92(to)

y'(to) = y1: y1 = c191(to) + c295 (o)

To find IVP solution, need to solve above system of two
equations for the unknowns c; and cs.

Note the IVP has a unique solution if and only if the
above system of two equations has a unique solution for
c1 and cs.



Note that in these equations c¢; and c; are the unknowns and

Yo, 91(to), d2(to), y1, @1 (to), ¢5(to) are the constants. We can
translate this linear system of equations into matrix form:

e s = G g ] =]

Note this equation has a unique solution if and only if

d1(to) @2(to) | _|o1 P2 _ . .,
det[qsa(to) ¢’2(t0)]_ o, ¢ | = P12 9270

Definition: The Wronskian of two differential functions, ¢4

and ¢o is

W (1, 62) = p1h — @2 = jg,i sz
Examples: |
1.) W(cos(t), sin(t)) = f;);% ‘ZZZEQ ‘
= cos?(t) + sin?(t) = 1 > 0.

2.) W(edtcos(nt), ePtsin(nt)) =
e cos(nt) e¥ sin(nt)
dedtcos(nt) — ne“sin(nt) de® sin(nt) + nettcos(nt)
—e cos(nt)(de?tsin(nt)+netcos(nt))—e sin(nt)(de? cos(nt)—ne?t sin(n
=e2%[cos(nt)(dsin(nt)+ncos(nt))—sin(nt)(dcos(nt)—nsin(nt))]
—e?%[dcos(nt)sin(nt)+ncos? (nt)—dsin(nt)cos(nt)+nsin?(nt)])

= 2% [ncos?(nt) + nsin?(nt)]

= ne2¥[cos?(nt) + sin?(nt)] = ne?¥ > 0 for all t.



Definition: The Wronskian of two differential funct-
ions, f and g is

W(f,g)ng'—f’QZ\j:, 5/’

Thm 3.2.3: Suppose that

¢1 and ¢4 are two solutions to y”+p( )y’+ (t)y = O
If W(g1,92)(to) = ¢1(to)@a(to) — ¢1(t0)@2(to) #

then

there is a unique choice of constants c¢; and ¢y such that
c1¢1+co@o satisfies this homogeneous linear differential
equation and initial conditions, y(tg) = yo, ¥'(to) = ;-

Thm 3.2.4: Given the hypothesis of thm 3.2.1,
suppose that ¢; and ¢5 are two solutions to

y' +pt)y" +q(t)y = 0.
If W(¢1,p2)(tg) # 0, for some tg € (a,b), then any sol-
ution to this homogeneous linear differential equation
can be written as y = c1¢1 + co¢o for some c¢; and cs.

Defn If ¢1 and ¢, satisfy the conditions in thm 3.2.4,
then ¢; and ¢, form a fundamental set of solutions to

y" +p(t)y" +q(t)y = 0.

Thm 3.2.5: Given any second order homogeneous lin-
ear differential equation, there exist a pair of functions
which form a fundamental set of solutions.



3.3: Linear Independence and the Wronskian

Defn: f and ¢ are linearly dependent if there exists
constants cq, cs such that ¢y # 0 or ¢y # 0 and
c1f(t) + cog(t) =0 for all t € (a,b)

Thm 3.3.1: If f : (a,b) - R and g(a,b) — R are
differentiable functions on (a, b) and if W (f, g)(ty) # 0
for some ty € (a,b), then f and g are linearly independ-
ent on (a,b). Moreover, if f and g are linearly depend-

ent on (a,b), then W(f,g)(t) =0 for all t € (a,b)

If c1 f(t)+cog(t) = 0 for all £, then ¢ f/(t) +c2g’(t) =0

Solve the following linear system of equations for ¢, ¢

c1 f(to) + c2g(to) =0
c1f'(to) + cag'(to) =0





