Existence and Uniqueness for LINEAR DEs.
Homogeneous:
y" + i)y - pa1 ()Y + pa(ty = 0
Non-homogeneous: g(t) # 0
g™ + 1)y 4 pa 1 (DY + pa(t)y = 9()
1st order LINEAR differential equation:

Thm 2.4.1: If p : (a,b) - R and g : (a,b) — R are
continuous and a < ty < b, then there exists a unique
function y = ¢(t), ¢ : (a,b) — R that satisfies the

IVP: o + p(t)y = g(t), y(to) = yo

Thm: If y = ¢1(¢) is a solution to homogeneous equation,
y' 4+ p(t)y = 0, then y = c¢1(t) is the general solution to
this equation.

If in addition y = (%) is a solution to non-homogeneous
equation, ' + p(t)y = g(t), then y = co1(t) + Y (t) is the
general solution to this equation.

Partial proof: y = ¢1(t) is a solution to y' + p(t)y = 0
implies

Thus y = c¢1(t) is a solution to y" + p(t)y = 0 since
y = 1(t) is a solution to ¥y’ + p(t)y = g(t) implies

Thus y = co1(t) + ¥ (t) is a solution to y" + p(t)y = g(t)
since



2nd order LINEAR differential equation:

Thm 3.2.1: If p: (a,0) - R, q¢ : (a,b) - R, and g :
(a,b) — R are continuous and a < ty < b, then there
exists a unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the initial value problem
y' +p)y +qt)y = g(t),
y(to) = Yo,
y'(to) = ¥

Thm 3.2.2: If ¢1 and ¢- are two solutions to a homogeneous|
linear differential equation, then c; ¢ + cos is also a sol-
ution to this linear differential equation.

Proof of thm 3.2.2:

Since y(t) = ¢;(t) is a solution to the linear homogeneous
differential equation y"” + py’ + qy = 0 where p and ¢ are
functions of ¢ (note this includes the case with constant
coefficients), then

Claim: y(t) = c1¢1(t) + cap2(t) is also a solution to y” +
py' +qy =0

Pf of claim:



Second order differential equation:

Linear equation with constant coefficients:
If the second order differential equation is

ay” +by" +cy =0,

then y = €' is a solution

Need to have two independent solutions.

Solve the following IVPs:

L) y" =6y +9y =0 y(0) =1,
2.) 4y —y' +2y=0 y(0) = 3,
3.) 4y + 4y +y =0 y(0) = 6,

1) 2y —2y =0 y(0) = 5,

y'(0) =2
y'(0) =4
y'(0) =7
y'(0) =9



ay” +by +cy=0, y=-¢e", then
ar?e™ + bre" 4 ce™ = (0 implies ar® + br +c =0,

Suppose r = r1, 7y are solutions to ar? +br +c =0
—bt+v/b2—4ac
2a

ry,ro =

If 71 # ro, then b* — 4ac # 0. Hence a general solution is
y = c1e"t + che’??

If b°> — 4ac > 0, general solution is y = c1e"t 4 cpe™™?.

If b — 4ac < 0, change format to linear combination of
real-valued functions instead of complex valued functions
by using Euler’s formula.

general solution is y = c¢1e%cos(nt) + coe? sin(nt) where

r=d=+1n

If ¥* — 4ac = 0, 11 = 72, so need 2nd (independent)
solution: te™!

Hence general solution is y = c1e”? 4 cote™?.

Initial value problem: use y(to) = o, y'(to) = y{, to solve
for c1, ¢y to find unique solution.



Derivation of general solutions:

If b — 4ac > 0 we guessed e"' is a solution and noted
that any linear combination of solutions is a solution to
a homogeneous linear differential equation.

Section 3.3: If b — 4ac < 0, :

Changed format of y = cje™? + c9e™? to linear combi-
nation of real-valued functions instead of complex valued
functions by using Euler’s formula:

et = cos(t) + isin(t)

Hence eldm)t = edteint — edt[cos(nt) + isin(nt)]

Let ri =d+1tn, r9 =d—1in

y = c1e"t + cqe’??

= c1e[cos(nt) + isin(nt)] + cae?[cos(—nt) + isin(—nt)]

= crecos(nt)+icie sin(nt)+cae? cos(nt)—icoe sin(nt)|j
=(c1 + c2)ecos(nt) +i(c; — ca)esin(nt)

= kiettcos(nt) + koetsin(nt)




Section 3.4: If b* — 4ac = 0, then | = 5.

Hence one solution is y = €™! Need second solution.

If y = €™ is a solution, y = ce™ is a solution.

How about y = v(t)e"*?
"(t)e™ + v(t)re™
"(t)e"t "(t)re"t + v/ (t)re™t + v(t)r?e"

_|_
= 0" (t)e™ + 20" (t)re™ + v(t)riem

ay’ + by’ +cy =0
a(v”e™ + 2v're"™ + vr?e™) + b(v'e™ + vre™) + cve™

=0
a(v” (t) + 20" (t)r + v(t)r?) + b(v'(t) +

v(t)r) +cv(t) =0
V" (1) + 2av' (t)r + av(t)r? + bu'(t) + bu(t)r + cv(t)

=0
v"(t) + (2ar + b)v'(t) +

+ (ar? + br + c)v(t) =0
v (t) + (2a(52) + b)v'(t) + 0 =0
since ar? +br +c=0and r = =2

av”(t) + (=b+b)v'(t) = 0.

Thus av”(t) = 0.
Hence v"(t) = 0 and v'(t) = k1 and v(t) = kit + ko

Hence v(t)e™ = (kit + ko)e™" is a soln

Thus te™'? is a nice second solution.

Hence general solution is y = c1e"? + cote™?
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Solve: ¥ +y =0, y(0) = —1, y'(0) = —3

r? +1 =0 implies 7* = —1. Thus r = +i.

Since r = 0+ 11, y = kicos(t) + kasin(t).

Then y' = —kysin(t) + kacos(t)

y(0) = —1: —1 = ky1cos(0) + kosin(0) implies —1 = k4
y'(0) = —3: —3 = —ky5in(0) + kocos(0) implies —3 = ko

Thus IVP solution: y = —cos(t) — 3sin(t)

When does the following IVP have unique sol’n:
IVP: ay” + by’ + cy = 0, y(to) = yo, y¥'(to) = 1.

Suppose y = c1¢1(t) + cap2(t) is a solution to
ay’ + by + cy = 0. Then ¢y = 19 (t) + cadh(t)

Y(to) = yo: Yo = c191(to) + c292(to)

Yy (to) = y1: Y1 = c19](to) + cags(to)

To find IVP solution, need to solve above system of two
equations for the unknowns c; and cs.

Note the IVP has a unique solution if and only if the
above system of two equations has a unique solution for
c1 and co.



Note that in these equations c¢; and ¢y are the unknowns and

Yo, D1(to), P2(to), y1, @1 (to), ¢5(to) are the constants. We can
translate this linear system of equations into matrix form:

e e G g ] =]

Note this equation has a unique solution if and only if

P1(to) @2(to) | _|o1 P2 _ . .,
det[qsa(to) ¢g<to>]— o, ¢ | = P12 9270

Definition: The Wronskian of two differential functions, ¢4
and ¢o is

W (61, 6) = 16 — 460 = gg; ji
Examples: |
1.) W(cos(t), sin(t)) = fgjéz) ‘ZZZEQ ‘
= cos?(t) + sin?(t) = 1 > 0.

2.) W(edcos(nt), e?tsin(nt)) =
e cos(nt) el sin(nt)
de?tcos(nt) — ne“sin(nt) de® sin(nt) + nettcos(nt)
—e cos(nt)(de?t sin(nt)+netcos(nt))—e sin(nt)(de? cos(nt)—ne?tsin(nt)’
—e29 [cos(nt)(dsin(nt)+ncos(nt))—sin(nt)(dcos(nt)—nsin(nt))]
—e?%[dcos(nt)sin(nt)+ncos? (nt)—dsin(nt)cos(nt)+nsin?(nt)])

= e2%[ncos?(nt) + nsin?(nt)]

= ne¥[cos?(nt) + sin?(nt)] = ne?¥ > 0 for all t.



Definition: The Wronskian of two differential funct-
ions, f and g is

W(f,g)ng'—f’QZ\;, gg/’

Thm 3.2.3: Suppose that

¢1 and ¢4 are two solutions to vy +p(t)y’ +q(t
If W(d1,02)(to) = ¢1(lo)Pa(to) — ¢4 (to)P2(
then

there is a unique choice of constants ¢; and ¢y such that
c1¢1+cogo satisfies this homogeneous linear differential
equation and initial conditions, y(tg) = yo, ¥'(to) = y{-

)y = 0.
to) # 0,

Thm 3.2.4: Given the hypothesis of thm 3.2.1,
suppose that ¢; and ¢5 are two solutions to

y"+pt)y" +q(t)y = 0.
If W(¢1,p2)(tg) # 0, for some tg € (a,b), then any sol-
ution to this homogeneous linear differential equation
can be written as y = c1¢1 + co¢o for some c¢; and cs.

Defn If ¢1 and ¢- satisfy the conditions in thm 3.2.4,
then ¢, and ¢ form a fundamental set of solutions to

y" +p(t)y" +q(t)y = 0.

Thm 3.2.5: Given any second order homogeneous lin-
ear differential equation, there exist a pair of functions
which form a fundamental set of solutions.



3.3: Linear Independence and the Wronskian

Defn: f and g are linearly dependent if there exists
constants cq, co such that ¢y # 0 or ¢y # 0 and
c1f(t) + cog(t) =0 for all t € (a,b)

Thm 3.3.1: If f : (a,b) - R and g(a,b) — R are
differentiable functions on (a, b) and if W (f, g)(ty) # 0
for some ty € (a,b), then f and g are linearly independ-
ent on (a,b). Moreover, if f and g are linearly depend-

ent on (a,b), then W(f,g)(t) =0 for all t € (a,b)

If ¢1 f(t)+cog(t) = 0 for all £, then ¢ f/(t) +c2g’(t) =0

Solve the following linear system of equations for c1, ¢

c1f(to) + c2g(to) =0
c1f'(to) + cag'(to) =0



Thm: Suppose c1¢1(t) + cag2(t) is a general solution
to
ay” +by" +cy =0,

If 7 is a solution to
ay” + by’ + cy = g(t) [*],

Then @ + c191(t) + ca¢2(t) is also a solution to [*].

Moreover if 7 is also a solution to [*], then there exist
constants c1, co such that

¥ =Y+ c191(t) + cada(t)

Or in other words, ¥ + c1¢1(t) + cop2(t) is a general
solution to [*].

Proof:
Define L(f) =af"” +bf" + cf.
Recall L is a linear function.

Let h = c1¢1(t) + cop2(t). Since h is a solution to the
differential equation, ay” + by’ + cy = 0,

Since 1 is a solution to ay” + by’ + cy = g(1),



We will now show that ?,D + Cl¢1 (t) + CQ¢2 (t) = @D -+ h
is also a solution to [*].

Since ~ a solution to ay” + by’ + cy = g(t),

We will first show that v — ¢ is a solution to the
differential equation ay” + by’ + cy = 0.

Since v — 1) is a solution to ay”’ + by’ + cy = 0 and

c1¢1(t) 4+ cago(t) is a general solution to
ay” + by + cy =0,

there exist constants c;, co such that
Y —P =

Thus v =¥ + c191(¢) + c202(1).




Thm:

Suppose fi is a a solution to ay” + by’ + cy = ¢1(t)
and f5 is a a solution to ay” + by’ + cy = g2(t), then
f1 + f2 is a solution to ay” + by’ + cy = g1(t) + g2(t)

Proof: Let L(f) =af” +bf" + cf.

Since f; is a solution to ay” + by’ + cy = g1(¢),

Since fo is a solution to ay” + by’ + cy = g2 (1),

We will now show that f; + fo is a solution to
ay” +by' +cy = g1(t) + g2(1).

Sidenote: The proofs above work even if a, b, c are fun-
ctions of t instead of constants.



Examples: Find a suitable form for 1) for the following
differential equations:

1.) " — 4y’ — 5y = 4e*

2) Yy — 4y — by =1t* -2t +1

3.) y" — 4y’ — by = 4sin(3t)

4.) y" — by = 4sin(3t)

5.) vy — 4y =2 -2t +1

6.) vy’ — 4y — 5y =4(t* — 2t — 1)e*



7.) y" — 4y — by = 4sin(3t)e!

8.) vy’ — 4y — by = 4(t? — 2t — 1)sin(3t)e*

9.) vy — 4y’ — by = 4sin(3t) + 4sin(3t)e*

10.) y"” — 4y’ — by
= 4sin(3t)e?t + 4(t? — 2t — 1)e?t +¢2 -2t — 1



11.) y"” — 4y’ — by = 4sin(3t) + 5cos(3t)

12.) o — 4y’ — by = 4e™ !

To solve ay” + by’ + cy = g1(t) + g2(t) + ...gn (t) [**]

1.) Find the general solution to ay” + by’ + cy = 0:
C101 + Ca2¢2

2.) For each g;, find a solution to ay” + by’ + cy = g;:
Vi

This includes plugging guessed solution 1; into
ay" +by' + cy = gi.

The general solution to [**] is

C191 + C202 + Y1 + P2 + .Yy
3.) If initial value problem:

Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find ¢y, c2).



Solve y"" — 4y’ — by = 4sin(3t), y(0) =6, y'(0) = 7.
1.) First solve homogeneous equation:

Find the general solution to y"” — 4y’ — 5y = O:

Guess y = e" for HOMOGENEOUS equation:

y" —4y" -5y =0
r2e’ — 4re™ — He't = ()
e"t(r? —4r —5) =0

e’ = 0, thus can divide both sides by e"*:
r2—dr —5=0

(r+1)(r—=5)=0. Thus r = —1, 5.

Thus y = e~ ! and y = e®* are both solutions to
LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR
HOMOGENEQOUS equation is

Yy = cle_t + 0265t



2.) Find one solution to non-homogeneous eq’n:
Find a solution to ay” + by’ + cy = 4sin(3t):
Guess y = Asin(3t) + Bcos(3t)

y' = 3Acos(3t) — 3Bsin(3t)

y" = —9Asin(3t) — 9Bcos(3t)

y'" — 4y" — by = 4sin(3t)

—9Asin(3t) — 9Bcos(3t)
12Bsin(3t) — 12Acos(3t)
—b5Asin(3t) — 5cos(3t)
(12B — 14A)sin(3t) — (—14B —12A)cos(3t) = 4sin(3t)

Since {sin(3t), cos(3t)} is a linearly independent set:
12B — 14A =4 and —14B — 12A =0

Thus A= —13B = —ZB and

12B — 14(—1{B) =12B+ 7({B) =32 pB =B =4

Thus B :4(%) — % and A= —%B — _%(Q) _ _ 14

Thus y = (—==)sin(3t) + s2cos(3t) is one solution to the

85
nonhomogeneous equation.

Thus the general solution to the 2nd order linear non-
homogeneous equation is

y =cre "+ coe® — (§2)sin(3t) + s2cos(3t)



3.) If initial value problem:

Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find ¢y, ¢3).

NOTE: you must know the GENERAL solution to the
ODE BEFORE you can solve for the initial values. The
homogeneous solution and the one nonhomogeneous solut-
ion found in steps 1 and 2 above do NOT need to separately
satisfy the initial values.

Solve y” — 4y’ — by = 4sin(3t), y(0) =6, y'(0) = 7.
General solution: y = cie™t+coe® — (52 ) sin(3t)+ 12 cos(3t)

Thus 3’ = —cie~t 4 Bepe® — (22)cos(3t) — Esin(3t)

85 85
: _ 12 498
y(O):6 6—Cl—|—02—|—% g—cl—#CQ
. _ 42 637 _
y'(0)=T: (= —c1+5c2 — 55 S5 = —C1+ d¢o
_ 4984637 __ 1135 __ 227 _ 227
6cy = =55~ = 55~ = 77 Thus ez = 355
o, o— 498 . _ 498 _ 227 _ 29881135 _ 1853 _ 109
1 — 785 2 — 785 102 — 510 — 510 — 30

Thus y = (42)e™" + (21)e% — (£5)sin(3t) + +2cos(3t).

Partial Check: y(0) = (58) + (23I) + &£ = 6.

(0) =~ +5(20) - 2 =

(e—t)//_4(e—t)/_5(€—t) — 0 and (e5t)//_4(65t)/_5(65t) — 0



Potential proofs for exam 1:
Proof by (counter) example:

1. Prove a function is not 1:1, not onto, not a bijection,
not linear.

2. Prove that a differential equation can have multiple
solutions.

Prove convergence of a series using ratio test.
Induction proof.
Prove a function is linear.

Theorem 3.2.2: If y = ¢1(t) and y = ¢2(t) are solutions to
the 2nd order linear ODE, ay” + by’ + cy = 0, then their
linear combination y = ¢1¢1(t) + cop2(t) is also a solution
for constants ¢; and cs.

Note you may use what you know from both pre-calculus
and calculus (e.g., integration and derivatives are linear).



