

and
$$x_2 = \frac{3e^{x_1}}{x_1} = \frac{3}{-e^{x_2}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

https://www.geogebra.org/3d (t,
$$-e \land (-2t)$$
, $3*e \land (-2t)$)

Hence
$$x_1 = -2e^{r_1t} < 0$$
 and $x_2 = 6e^{r_1t} > 0$

and
$$\frac{x_2}{x_1} = \frac{6e^{r_1t}}{-2e^{r_1t}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

$$https://www.geogebra.org/3d \qquad (t, -2*e \land (-2t), \, 6*e \land (-2t))$$

x, = 3

$$\text{IVP} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \text{ implies } c_1 = -1, c_2 = 0.$$
 Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$$

Hence
$$x_1 = e^{r_1 t} > 0$$
 and $x_2 = -3e^{r_1 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{-3}{1}$$
. Thus $x_2 = \frac{-3}{1}x_1$.

https://www.geogebra.org/3d
$$(t, e \land (-2t), -3*e \land (-2t))$$

guadrant IV (-1) is in quadrant IV

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = 1$.

Hence
$$x_1 = 0$$
 and $x_2 = e^{r_2 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{1e^{x_2t}}{0e^{x_2t}} = \frac{1}{0}$$
. Thus $x_2 = \frac{1}{0}x_1$.

https://www.geogebra.org/3d $(t, 0, e \land (5t))$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = -1$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

Hence
$$x_1 = 0$$
 and $x_2 = -e^{r_2 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{-1e^{r_2t}}{0e^{r_2t}} = \frac{-1}{0}$$
. Thus $x_2 = \frac{-1}{0}x_1$.

https://www.geogebra.org/3d $(t, 0, -e \land (5t))$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 implies $c_1 = c_2 = 0$.

Hence $x_1 = 0$ and $x_2 = 0$

https://www.geogebra.org/3d (t, 0, 0)

Thus IVP soln:
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$:

The smaller eigenvalue of A is $r_1 =$ _____. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 =$ _____. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$ The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$ The following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$.

For large positive values of t, which term dominates: $c_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$ For large positive values of t, which term dominates: $c_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope $m = \underline{\hspace{1cm}}$
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

2100

-500

For large **negative** values of t which is larger: e^{-2t} or e^{5t} ?

For large **negative** values of t, which term dominates $\begin{bmatrix} c_1 \\ 3 \end{bmatrix} e^{-2t}$ $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior $t \to -\infty$ (select all that apply):

- * $\lim_{t \to -\infty} \mathbf{x}(t) = \text{does not exist.}$
- * $\lim \mathbf{x}(t) = \mathbf{0}$
- * approaches the line y = mx with slope m =
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Example 3:	Given that the solution to $\mathbf{x'} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$
	x 2 1 x -	

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

 $c_1 = 0, c_2 = 1$ $x_1 = -e^{26}$ $x_2 = 3e^{26}$

$$t, x_1$$
-plane

$$t, x_2$$
-plane

 x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

$$x_1, x_2$$
-plane

Plot several direction vectors where the slope is 0 and where slope is vertical.

raph several trajectories.

arrows point away from origin since both e. value positive = both exponental positive

\times
-10
N
N
×
H
ner fur bahon
40
20
7
t
ner
arge
60
1

Answer the following questions for $A = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$:
The smaller eigenvalue of A is $r_1 = \underline{}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{}$
The larger eigenvalue of A is $r_2 = $ An eigenvector corresponding to r_2 is $\mathbf{w} =$

The general solution to $\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

very very large

For large **positive** values of t which is larger: e^{2t} or e^{5t} ?

?= q[-1]e2++q[i]e

large

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

For large **positive** values of t, which term dominates:

$$c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$$
 or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

* moves away from the origin.

* moves toward the origin.

* approaches the line y = mx with slope m =

e200 << e500

* approaches a line y = mx + b for $b \neq 0$ with slope $m = \underline{\hspace{1cm}}$. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: e^{2t} or e^{5t} ?

For large **negative** values of t, which term dominates:

$$c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$$
 or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$ \sqrt{s}

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior $t \to -\infty$ (select all that apply):

$$\lim_{t \to -\infty} \mathbf{x}(t) = \mathbf{0}$$

* approaches the line y = mx with slope m = 1

* approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

small perturbation of \$22 -

Example 2: Given that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

$$\frac{dx_2}{dx_1} =$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

negative e. values => Two negative exponents

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$:

The smaller eigenvalue of A is $r_1 = \underline{}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{}$

The larger eigenvalue of A is $r_2 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \underline{\hspace{1cm}}$

The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

For large **positive** values of t which is larger: e^{-5t} or e^{-2t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t},$

 $c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}$ or $\left(c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} \right)$? For large **positive** values of t, which term dominates:

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply): t = 100 e^{-500} e^{-200}

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =

For large negative values of t which is larger: e^{-5t} or e^{-2t}

For large **negative** values of t, which term dominates $c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}$ or $c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$?

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior $t \to -\infty$ (select all that apply):

- $\lim_{t \to -\infty} \mathbf{x}(t) = \text{does not exist.}$
- $\lim_{t \to -\infty} \mathbf{x}(t) = \mathbf{0}$
- * approaches the line y = mx with slope m =
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.