To solve linear DE ay” + by’ +cy = g1 + g2 + g3

Step 1: Solve homogeneous version: ay” + by’ + cy = 0 implies
ar?® 4+ br + ¢ = 0 implies Yy = c1¢1 + cada.

Step 2a: Find one non-homogeneous solution, y = f1, to ay” + by’ +cy = ¢
Step 2b: Find one non-homogeneous solution, ¥ = fa, to ay” + by’ +cy = ¢2
Step 2c: Find one non-homogeneous solution, y = f3, to ay”’ + by’ + cy = g3

Step 3: Combine all solutions to create the general solution to the non-
homogeneous DE:

y=c1¢91 +caga+ fi+ fa+ fa

Last step: If IVP, plug in initial values to find the constants ¢; and cs.

Guess a possible non-homog soln for the following DEs:
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y=cre ' +cte P gincer? +2r+1=(r+1)(r+1)=0
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3.5: Solving non-homogeneous linear DE using the undetermined coefficients
method

1.) Step 1: Solve homogeneous version of DE.

2.) Step 2: Guess a non-homogeneous solution with undetermined coeffic-
ients. Plug into the non-homogeneous linear DE to solve for the undetermined
coeflicients.

3.) Combing general homogeneous solution with a non-homogeneous solution.
Starting guess:

If ay” + by + cy = keP?, guess y = AeP*

If ay” + by’ + cy = ksin(pt) + jcos(pt), guess y = Asin(pt) JILI.S’cos(irJt)

If ay” + by’ + cy = degree n polynomial,
guess ¥y = a degree n polynomial including all terms
(with undetermined coefficients) including constant term.

If ay” + by’ + cy = a sum, guess a sum (but usually solve separately).
If ay” + by’ + cy = a product, guess a product.

Sometimes the above can be simplified:

If a term does not show up When you take the derivatives of y, you may

be able to omit that term. E.g, y” + w?y = sin(pt) Where > p # w, then

y = Asin(pt) is a simpler guess that delff g‘ ’{_ erm, S o
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Try multiplying non-simplified guess by\t\

Example: If guess is a homogeneous solution, then that wi e a non-
homogeneous solution. Thus must guess something else. Multiplying non- e 4~y
simplified guess by ¢ until no longer homogeneous works. I A

Ve
Example: If ¢ term missing, and g(f) = degree n polynomial, then will need 7 J

to multiply by ¢ so that when you plug in guess, you will have a degree n
polynomial on both sides of equal sign.

Note: you are multiplying the non-simplified guess by £. When you take
derivatives of y, you must use the product rule. Thus extra terms appear
when you take the derivative and you will need the non-simplified guess to
cancel out these terms. N



