\qquad
\qquad
[8] 1. A 2 kg object attached to a spring will stretch the spring 980 cm . The mass is also attached to a viscous damper that exerts a force of 10 N when the velocity of the mass is $2 \mathrm{~m} / \mathrm{sec}$. No external force is applied to the object. The object is initially displaced 20 cm downward from its equilibrium position and given a velocity of $10 \mathrm{~cm} / \mathrm{sec}$ upward. State the 2 nd order initial value problem that models the motion of the mass. Note $g=9.8$ meters $/ \sec ^{2}$. Do NOT solve.

Differential equation: \qquad

Initial values: \qquad
[6] 2. Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}=0$

Solution: \qquad
[6] 3. Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$
\qquad

Answers:
[8] 1. A 2 kg object attached to a spring will stretch the spring 980 cm . The mass is also attached to a viscous damper that exerts a force of 10 N when the velocity of the mass is $2 \mathrm{~m} / \mathrm{sec}$. No external force is applied to the object. The object is initially displaced 20 cm downward from its equilibrium position and given a velocity of $10 \mathrm{~cm} / \mathrm{sec}$ upward. State the 2 nd order initial value problem that models the motion of the mass. Note $g=9.8$ meters $/ \sec ^{2}$. Do NOT solve.

A 2 kg object attached to a spring $\Rightarrow m=2$
A 2 kg object attached to a spring will stretch the spring $980 \mathrm{~cm} \Rightarrow m=2, L=9.8 m, k L=m g$ implies $9.8 k=(2)(9.8)$. Thus $k=2$.

The mass is also attached to a viscous damper that exerts a force of 10 N when the velocity of the mass is $2 \mathrm{~m} / \mathrm{sec}$ and $\left|F_{\text {damping }}\right|=|\gamma| v \Rightarrow 10=\gamma(2)$, and thus $\gamma=5$.

No external force is applied to the object $\Rightarrow F_{\text {external }}=0$
The object is initially displaced 20 cm downward from its equilibrium position $\Rightarrow u(0)=+0.2 \mathrm{~m}$.
and given a velocity of $10 \mathrm{~cm} / \mathrm{sec}$ upward $\Rightarrow u(0)=-0.1 \mathrm{~m}$
Differential equation: $\quad 2 u^{\prime \prime}+5 u^{\prime}+2 u=0$

Initial values: $\quad \mathrm{u}(0)=0.2, \quad u(0)=-0.1$
[6] 2. Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}=0$
$r^{3}-3 r^{2}=0$ implies $r^{2}(r-3)=0$. Thus $r=0,0,3$
Hence 3 linearly independent solutions are $y=e^{0 t}=1, y=t e^{0 t}=t, y=e^{3 t}$
Solution:

$$
y=c_{1}+c_{2} t+c_{3} e^{3 t}
$$

[6] 3. Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$
$r^{3}+2 r^{2}-r-2=0$
$r^{2}(r+2)-(r+2)=\left(r^{2}-1\right)(r+2)=0$. Thus $r= \pm 1,-2$
Alternative method if you don't notice $r+2$ is a factor: Find a root, for example, $r=1$ is a solution. Hence
$r^{3}+2 r^{2}-r-2=(r-1)\left(r^{2}+x r+2\right)=r^{3}+(x-1) r^{2}+(2-x) r+2$. Thus $x-1=2$ and $x=3$
$r^{3}+2 r^{2}-r-2=(r-1)\left(r^{2}+3 r+2\right)=(r-1)(r+1)(r+2)=0$. Thus $r= \pm 1,-2$.
Solution: $y=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{-2 t}$

