MATH2560 Eng. Math. IV Differential Equations

Quiz 4 Name	Section
-------------	---------

[8] 1. A 2 kg object attached to a spring will stretch the spring 980 cm. The mass is also attached to a viscous damper that exerts a force of 10N when the velocity of the mass is 2m/sec. No external force is applied to the object. The object is initially displaced 20 cm downward from its equilibrium position and given a velocity of 10 cm/sec upward. State the 2nd order initial value problem that models the motion of the mass. Note g = 9.8 meters/sec². Do NOT solve.

Differential equation:

Initial values:

[6] 2. Solve y''' - 3y'' = 0

Solution:

[6] 3. Solve y''' + 2y'' - y' - 2y = 0

Answers:

Hence

[8] 1. A 2 kg object attached to a spring will stretch the spring 980 cm. The mass is also attached to a viscous damper that exerts a force of 10N when the velocity of the mass is 2m/sec. No external force is applied to the object. The object is initially displaced 20 cm downward from its equilibrium position and given a velocity of 10 cm/sec upward. State the 2nd order initial value problem that models the motion of the mass. Note g = 9.8 meters/sec². Do NOT solve.

A 2 kg object attached to a spring $\Rightarrow m = 2$

A 2 kg object attached to a spring will stretch the spring 980 cm $\Rightarrow m = 2, L = 9.8m, kL = mg$ implies 9.8k = (2)(9.8). Thus k = 2.

The mass is also attached to a viscous damper that exerts a force of 10N when the velocity of the mass is $2m/\sec$ and $|F_{damping}| = |\gamma|v \Rightarrow 10 = \gamma(2)$, and thus $\gamma = 5$.

No external force is applied to the object $\Rightarrow F_{external} = 0$

The object is initially displaced 20 cm downward from its equilibrium position $\Rightarrow u(0) = +0.2m$.

and given a velocity of 10 cm/sec upward $\Rightarrow u(0) = -0.1m$

Differential equation: 2u'' + 5u' + 2u = 0

Initial values: u(0) = 0.2, u(0) = -0.1

[6] 2. Solve y''' - 3y'' = 0 $r^3 - 3r^2 = 0$ implies $r^2(r-3) = 0$. Thus r = 0, 0, 3Hence 3 linearly independent solutions are $y = e^{0t} = 1$, $y = te^{0t} = t$, $y = e^{3t}$ Solution: $y = c_1 + c_2t + c_3e^{3t}$

[6] 3. Solve y''' + 2y'' - y' - 2y = 0 $r^3 + 2r^2 - r - 2 = 0$ $r^2(r+2) - (r+2) = (r^2 - 1)(r+2) = 0$. Thus $r = \pm 1, -2$ Alternative method if you don't notice r + 2 is a factor: Find a root, for example, r = 1 is a solution.

 $r^{3} + 2r^{2} - r - 2 = (r - 1)(r^{2} + xr + 2) = r^{3} + (x - 1)r^{2} + (2 - x)r + 2.$ Thus x - 1 = 2 and x = 3 $r^{3} + 2r^{2} - r - 2 = (r - 1)(r^{2} + 3r + 2) = (r - 1)(r + 1)(r + 2) = 0.$ Thus $r = \pm 1, -2.$ Solution: $y = c_{1}e^{t} + c_{2}e^{-t} + c_{3}e^{-2t}$