To solve linear DE $ay'' + by' + cy = g_1 + g_2 + g_3$

Step 1: Solve homogeneous version: $ay'' + by' + cy = 0$ implies
$$ar^2 + br + c = 0$$ implies $y = c_1\phi_1 + c_2\phi_2$.

Step 2a: Find one non-homogeneous solution, $y = f_1$, to $ay'' + by' + cy = g_1$
Step 2b: Find one non-homogeneous solution, $y = f_2$, to $ay'' + by' + cy = g_2$
Step 2c: Find one non-homogeneous solution, $y = f_3$, to $ay'' + by' + cy = g_3$

Step 3: Combine all solutions to create the general solution to the non-homogeneous DE:
$$y = c_1\phi_1 + c_2\phi_2 + f_1 + f_2 + f_3$$

Last step: If IVP, plug in initial values to find the constants c_1 and c_2.

Guess a possible non-homog soln for the following DEs:

Note homogeneous solution to $y'' + 2y' + y = 0$ is
$y = c_1e^{-t} + c_2te^{-t}$ since $r^2 + 2r + 1 = (r + 1)(r + 1) = 0$

1.) $y'' + 2y' + y = 4e^{2t}$

 Guess: ____________________________

2.) $y'' + 2y' + y = 4e^t$

 Guess: ____________________________

3.) $y'' + 2y' + y = 4e^{-t}$

 Guess: ____________________________
4.) \[y'' + 2y' + y = t \]
 Guess:

5.) \[y'' + 2y' + y = t + 1 \]
 Guess:

6.) \[y'' + 2y' + y = 4\sin(2t) \]
 Guess:

7.) \[y'' + 2y' + y = 4\sin(2t) + 5\cos(2t) \]
 Guess:

8.) \[y'' + 2y' + y = 4\sin(2t) + 5\cos(3t) \]
 Guess for step 2a:
 Guess for step 2b:

9.) \[y'' + 2y' + y = 4\sin(2t) + t + 1 \]
 Guess for step 2a:
 Guess for step 2b:

10.) \[y'' + 2y' + y = 4t\sin(2t) \]

 Guess:

11.) \[y'' + y = 4\sin(2t) \]

 Guess:

12.) \[y'' + y = 4\sin(t) \]

 Guess: