A very elementary introduction to proofs

Part 2

Example: Prove a function is not 1:1

By Dr. Isabel Darcy, Dept of Mathematics and AMCS, University of Iowa

Some notation:

 \forall = for all

 \exists = there exists

! = unique

 \exists ! = there exists a unique

TFAE =The following are equivalent

 $[p \Rightarrow q]$ is equivalent to $[\forall p, q \text{ holds}]$.

That is, for everything satisfying the hypothesis p, the conclusion q must hold.

$$f: A \to B$$
 is 1:1 iff $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

 $f:A\to B$ is 1:1 iff

 $\forall x_1 \text{ and } \forall x_2 \text{ such that } f(x_1) = f(x_2),$ we have $x_1 = x_2.$

How do we prove a function is **NOT** 1:1

A statement is **false** if the hypothesis holds, but the conclusion need not hold.

TFAE (The following are equivalent):

Hypothesis does not implies conclusion.

p does not imply q.

$$p \not\Rightarrow q$$
.

It is not true that $\forall p$, q holds.

 $\exists p, q \text{ holds.}$

That is there exists a specific case where the hypothesis holds, but the conclusion does not hold.

 $\sim [p \Rightarrow q]$ is equivalent to $\sim [\forall p, q \text{ holds}]$.

Thus if $p \Rightarrow q$ is false,

then it is not true that $[\forall p, q \text{ holds}]$.

That is, $\exists p$ such that q does not hold.

To prove that a statement is false:

Find an example where the hypothesis holds, but the conclusion does not hold.

 $f:A\to B$ is 1:1 iff

 $\forall x_1 \text{ and } \forall x_2 \text{ such that } f(x_1) = f(x_2),$ we have $x_1 = x_2.$

Ex: To prove a function is not 1:1, find specific x_1, x_2 such that $f(x_1) = f(x_2)$, but $x_1 \neq x_2$.

Ex: To prove a function is not 1:1, find specific x_1, x_2 such that $f(x_1) = f(x_2)$, but $x_1 \neq x_2$.

Ex: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not 1:1

Proof:

$$f(1) = 1^2 = 1 = (-1)^2 = f(-1)$$
, but $1 \neq -1$

Contrapositive of $[p \implies q]$ is $[\sim q \implies \sim p]$.

Example: The contrapositive of

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.
is $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.

Example: The contrapositive of

$$ln(x_1) = ln(x_2)$$
 implies $x_1 = x_2$.
is $x_1 \neq x_2$ implies $ln(x_1) \neq ln(x_2)$.

The contrapositive of a theorem is true:

If $p\Rightarrow q$ is true, then its contrapostive $\sim q\Rightarrow \sim p$ is also true.

If the conclusion q does not hold, then the hypothesis p cannot hold.

If $x_1 \neq x_2$ then $ln(x_1) \neq ln(x_2)$ since f(x) = ln(x) is 1:1.

Sidenote: The *converse* of $[p \implies q]$ is $[q \implies p]$.

The converse of a theorem need not be true.

That is $p \Rightarrow q$ does not imply $q \Rightarrow p$.

TFAE:

- $ightharpoonup f:A o B ext{ is }1:1.$
- $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.
- $\forall x_1 \neq x_2, \ f(x_1) \neq f(x_2).$

 $f:A\to B$ is NOT 1:1 iff

 $\exists x_1 \neq x_2 \text{ such that } f(x_1) = f(x_2).$