	Week 9					
10/19	Abel, 7.3, 7.1 (pdf), annotated (pdf)	HW 8 (due Sunday 10/25) 4.1: 1, 4, 5, 7, 16 4.2: 4, 13, 16				
10/21	ch 3, 4, 7 defns, 7.1, 7.2	4.3: 2, 7, 10 - 13 7.3: 13, 14, 15 7.1 (use matrix form): 3, 4, 5, 6, 12				
10/23	Review	Quiz 3 (due Sunday 10/25) [3 points, unlimited attempts]				
Week 10						
10/26	Problem session					
10/28	Exam 2	Tentative HW 9 (due Friday 10/30) and ??				

Abel's theorem: if ϕ_i are homogeneous solutions to an nth order linear DE,

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0$$

then $W(\phi_1, \phi_2, ..., \phi_n)(t) = ce^{-\int p_1(t)dt}$ for some constant c

Ex: Find the Wronskian of a fundamental set of solutions of the DE

$$y'' + 5y' = 0$$

Method 1: Find homogeneous solution

$$r^2 + 5r = 0$$
 implies $r = 0, -5$

homog sol'n
$$y = c_1 e^{0t} + c_2 e^{-5t} = c_1(1) + c_2 e^{-5t} = c_1 + c_2 e^{-5t}$$

A fundamental set of solutions: $\{1, e^{-5t}\}$

Wronskian =
$$W(1, e^{-5t})(t) = det \begin{pmatrix} 1 & e^{-5t} \\ 0 & -5e^{-5t} \end{pmatrix} = -5e^{-5t}$$

Method 2: Abel's theorem: Wronskian = $ce^{-\int p_1(t)dt}$

y'' + 5y' = 0 implies $p_1(t) = 5$.

Thus Wronskian = $W(1, e^{-5t})(t) = ce^{-\int 5dt} = ce^{-5t}$

Method 2: Abel's theorem: Wronskian = $ce^{-\int p_1(t)dt}$

y'' + 5y' = 0 implies $p_1(t) = 5$.

Thus Wronskian =
$$W(1, e^{-5t})(t) = ce^{-\int 5dt} = ce^{-5t}$$

A fundamental set of solutions: $\{1, e^{-5t}\}$

Wronskian =
$$W(1, e^{-5t})(t) = det \begin{pmatrix} 1 & e^{-5t} \\ 0 & -5e^{-5t} \end{pmatrix}$$

Method 2: Abel's theorem: Wronskian = $ce^{-\int p_1(t)dt}$

y'' + 5y' = 0 implies $p_1(t) = 5$.

Thus Wronskian = $W(1, e^{-5t})(t) = ce^{-\int 5dt} = ce^{-5t}$

Chapter 7: Systems of Linear DE

Defn: A set V together with two operations, called addition and scalar multiplication is a **vector space** if the following vector space axioms are satisfied for all vectors **u**, **v**, and **w** in V and all scalars, c, d in R.

Vector space axioms:

a.)
$$\mathbf{u} + \mathbf{v}$$
 is in V

g.)
$$(cd)\mathbf{u} = c(d\mathbf{u})$$

b.)
$$c\mathbf{u}$$
 is in V

h.)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

c.)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

i.)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

d.)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 j.) $1\mathbf{u} = \mathbf{u}$

j.)
$$1\mathbf{u} = \mathbf{v}$$

- e.) There is a vector, denoted by $\mathbf{0}$, in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all \mathbf{u} in V
- f.) For each \mathbf{u} in V, there is an element, denoted by $-\mathbf{u}$, in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Linear Algebra Review: Eigenvalues and Eigenvectors

Defn: λ is an **eigenvalue** of the linear transformation $T: V \to V$ if there exists a <u>nonzero</u> vector \mathbf{x} in V such that $T(\mathbf{x}) = \lambda \mathbf{x}$. The vector \mathbf{x} is said to be an **eigenvector** corresponding to the eigenvalue λ .

Example: Let
$$T(\mathbf{x}) = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \mathbf{x}$$
.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \end{bmatrix} = -1 \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

Thus -1 is an eigenvalue of A and $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus 5 is an eigenvalue of A and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix} \neq k \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$
 for any k .

Thus
$$\begin{bmatrix} 2 \\ 8 \end{bmatrix}$$
 is NOT an eigenvector of A .

MOTIVATION:

Note
$$\begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus
$$A \begin{bmatrix} 2 \\ 8 \end{bmatrix} = A \begin{pmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = A \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= -1 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \cdot 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix}$$

Finding eigenvalues:

Suppose $A\mathbf{x} = \lambda \mathbf{x}$ (Note A is a SQUARE matrix).

Then $A\mathbf{x} = \lambda I\mathbf{x}$ where I is the identity matrix.

Thus
$$\lambda I \mathbf{x} - A \mathbf{x} = (\lambda I - A) \mathbf{x} = \mathbf{0}$$

Thus if $A\mathbf{x} = \lambda \mathbf{x}$ for a nonzero \mathbf{x} , then $(\lambda I - A)\mathbf{x} = \mathbf{0}$ has a nonzero solution.

Thus $det(\lambda I - A)\mathbf{x} = 0$.

Note that the eigenvectors corresponding to λ are the nonzero solutions of $(\lambda I - A)\mathbf{x} = \mathbf{0}$.

Thus to find the eigenvalues of A and their corresponding eigenvectors:

Step 1: Find eigenvalues: Solve the equation

$$det(\lambda I - A) = 0 \text{ for } \lambda.$$

Step 2: For each eigenvalue λ_0 , find its corresponding eigenvectors by solving the homogeneous system of equations

$$(\lambda_0 I - A)\mathbf{x} = 0 \text{ for } \mathbf{x}.$$

Defn: $det(\lambda I - A) = 0$ is the **characteristic equation** of A.

Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries.

Defn: The **eigenspace** corresponding to an eigenvalue λ_0 of a matrix A is the set of all solutions of $(\lambda_0 I - A)\mathbf{x} = \mathbf{0}$.

Note: An eigenspace is a vector space

The vector **0** is always in the eigenspace.

The vector **0** is never an eigenvector.

The number 0 can be an eigenvalue.

Thm: A square matrix is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Chapter 7: Systems of Linear DE

Suppose an object moves in the 2D plane (the x_1, x_2 plane) so that it is at the point $(x_1(t), x_2(t))$ at time t. Suppose the object's velocity is given by

$$x_1'(t) = 4x_1 + x_2, x_2'(t) = 5x_1$$

Write in matrix form:

Homogeneous vs non-homogeneous system of linear DE:

Ex: y'' - 5y' + 6y = 0

Ex:
$$y'' - 5y' + 6y = 0$$
, $y(0) = 1$, $y'(0) = 2$

Ex: $y'' - 5y' + 6y = \sin(t)$

Ex: $y'''' - 5y'' + 6y = \sin(t)$