Summary of sections 3.1, 3, 4:

Solve linear homogeneous 2nd order DE with constant coefficients.

Solve ay'' + by' + cy = 0. Educated guess $y = e^{rt}$, then

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$
 implies $ar^2 + br + c = 0$,

Suppose $r=r_1, r_2$ are solutions to $ar^2+br+c=0$ $r_1, r_2=rac{-b\pm\sqrt{b^2-4ac}}{2a}$

If $r_1 \neq r_2$, then $b^2 - 4ac \neq 0$.

Hence a general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

If $b^2 - 4ac > 0$, general sol'n is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

If $b^2 - 4ac < 0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.

general solution is $y = c_1 e^{dt} cos(nt) + c_2 e^{dt} sin(nt)$ where $r = d \pm in$

If $b^2 - 4ac = 0$, $r_1 = r_2$, so need 2nd (independent) solution: te^{r_1t}

Hence general solution is $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$.

Initial value problem: use $y(t_0) = y_0$, $y'(t_0) = y'_0$ to solve for c_1, c_2 to find unique solution.

Ex 1: Solve y'' - 3y' - 4y = 0, y(0) = 1, y'(0) = 2.

Ex 1: Solve y'' - 3y' - 4y = 0, y(0) = 1, y'(0) = 2. If $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$.

$$r^2-3r-4=0 \Rightarrow (r-4)(r+1)=0 \Rightarrow r=4,-1.$$
 Hence general solution is $y=c_1e^{4t}+c_2e^{-t}$

Ex 1: Solve y'' - 3y' - 4y = 0, y(0) = 1, y'(0) = 2. If $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$.

$$r^2-3r-4=0 \Rightarrow (r-4)(r+1)=0 \Rightarrow r=4,-1.$$
 Hence general solution is $y=c_1e^{4t}+c_2e^{-t}$

Solution to IVP: Need to solve for 2 unknowns, $c_1 \& c_2$

Ex 1: Solve y'' - 3y' - 4y = 0, y(0) = 1, y'(0) = 2. If $y = e^{rt}$, then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$.

$$r^2 - 3r - 4 = 0 \Rightarrow (r - 4)(r + 1) = 0 \Rightarrow r = 4, -1.$$

Hence general solution is $y = c_1 e^{4t} + c_2 e^{-t}$

Solution to IVP: Need to solve for 2 unknowns, $c_1 \& c_2$

Thus need 2 eqns:

$$y=c_1e^{4t}+c_2e^{-t}, \quad y(0)=1 \Rightarrow 1=c_1+c_2$$
 $y'=4c_1e^{4t}-c_2e^{-t}, \quad y'(0)=2 \Rightarrow 2=4c_1-c_2$ $3=5c_1\Rightarrow c_1=\frac{3}{5} \text{ and } c_2=1-c_1=1-\frac{3}{5}=\frac{2}{5}$ Thus IVP soln: $y=\frac{3}{5}e^{4t}+\frac{2}{5}e^{-t}$

Ex 2: Solve y'' - 3y' + 4y = 0.

 $y=e^{rt}$ implies $r^2-3r+4=0$ and hence

Ex 2: Solve y'' - 3y' + 4y = 0.

 $y=e^{rt}$ implies $r^2-3r+4=0$ and hence

$$r = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(4)}}{2} = \frac{3}{2} \pm \frac{\sqrt{9 - 16}}{2} = \frac{3}{2} \pm i\frac{\sqrt{7}}{2}$$

Hence general sol'n is $y=c_1e^{\frac{3}{2}t}cos(\frac{\sqrt{7}}{2}t)+c_2e^{\frac{3}{2}t}sin(\frac{\sqrt{7}}{2}t)$

Ex 3: y'' - 6y' + 9y = 0

Ex 3:
$$y'' - 6y' + 9y = 0$$

$$r^2 - 6r + 9 = (r - 3)^2 = 0$$

Repeated root, r = 3 implies

general solution is $y = c_1 e^{3t} + c_2 t e^{3t}$

Homogeneous linear 2nd order differential equation

$$R(t)y'' + P(t)y' + Q(t)y = 0$$

Existence and Uniqueness for LINEAR DEs.

<u>Homogeneous:</u>

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0$$

Non-homogeneous: $g(t) \neq 0$

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = g(t)$$

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a,b)\to R$ and $g:(a,b)\to R$ are continuous and $a< t_0< b$, then there exists a unique function $y=\phi(t), \ \phi:(a,b)\to R$ that satisfies the

IVP:
$$y' + p(t)y = g(t)$$
, $y(t_0) = y_0$

Proof 1: Constructive proof (use integrating factor to find solution).

Proof 2 outline: Use linearity.

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a,b)\to R$ and $g:(a,b)\to R$ are continuous and $a< t_0< b$, then there exists a unique function $y=\phi(t), \ \phi:(a,b)\to R$ that satisfies the

IVP:
$$y' + p(t)y = g(t)$$
, $y(t_0) = y_0$

Thm: If $y = \phi_1(t)$ is a solution to <u>homogeneous</u> equation, y' + p(t)y = 0, then $y = c\phi_1(t)$ is the general solution to this equation.

If in addition $y=\psi(t)$ is a solution to non-homogeneous equation, y'+p(t)y=g(t), then $y=c\phi_1(t)+\psi(t)$ is the general solution to this equation.

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a,b) \to R$ and $g:(a,b) \to R$ are continuous and $a < t_0 < b$, then

 $\exists !$ function $y = \phi(t)$, $\phi: (a,b) \to R$ that satisfies

IVP:
$$y' + p(t)y = g(t)$$
, $y(t_0) = y_0$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a,b)\to R$, $q:(a,b)\to R$, and $g:(a,b)\to R$ are continuous and $a< t_0 < b$, then $\exists !$ function $y=\phi(t)$, $\phi:(a,b)\to R$ that satisfies

IVP:
$$y'' + p(t)y' + q(t)y = g(t)$$
, $y(t_0) = y_0$, $y'(t_0) = y'_0$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a,b) \to R$, $q:(a,b) \to R$, and $g:(a,b) \to R$ are continuous and $a < t_0 < b$, then $\exists !$ function $y = \phi(t)$, $\phi:(a,b) \to R$ that satisfies

IVP: y'' + p(t)y' + q(t)y = g(t), $y(t_0) = y_0$, $y'(t_0) = y'_0$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a,b) \to R$, $q:(a,b) \to R$, and $g:(a,b) \to R$ are continuous and $a < t_0 < b$, then $\exists !$ function $y = \phi(t)$, $\phi:(a,b) \to R$ that satisfies

IVP: y'' + p(t)y' + q(t)y = g(t), $y(t_0) = y_0$, $y'(t_0) = y'_0$

Thm 3.2.2: If ϕ_1 and ϕ_2 are two solutions to a <u>homogeneous</u> linear differential equation

$$y'' + p(t)y' + q(t)y = 0$$

then $c_1\phi_1+c_2\phi_2$ is also a solution to this linear differential equation.

Proof of thm 3.2.2:

Since $y(t) = \phi_i(t)$ is a solution to the linear homogeneous differential equation y'' + py' + qy = 0 where p and q are functions of t (note this includes the case with constant coefficients), then

Claim: $y(t) = c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to y'' + py' + qy = 0

Pf of claim:

Claim: If $y = \phi_1(t)$ and $y = \phi_2(t)$ are linearly independent solutions to y'' + py' + qy = 0, then

general solution is $y(t) = c_1\phi_1(t) + c_2\phi_2(t)$

That is any solution to this linear 2nd order homogeneous differential equation can be written as a linear combination of the linear independent functions $y = \phi_1(t)$ and $y = \phi_2(t)$.

Derivation of general solutions:

Solve ay'' + by' + cy = 0. Educated guess $y = e^{rt}$, then

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$
 implies $ar^2 + br + c = 0$,

Suppose
$$r=r_1, r_2$$
 are solutions to $ar^2+br+c=0$
$$r_1, r_2=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

If $b^2-4ac>0$ we guessed e^{rt} is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation.

Section 3.3: If $b^2 - 4ac < 0$, :

Changed format of $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$e^{it} = \cos(t) + i\sin(t)$$

Hence $e^{(d+in)t} = e^{dt}e^{int} = e^{dt}[cos(nt) + isin(nt)]$

Let $r_1 = d + in$, $r_2 = d - in$

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Section 3.4: If $b^2 - 4ac = 0$, then $r_1 = r_2$. Hence one solution is $y = e^{r_1 t}$ Need second solution.

If $y=e^{rt}$ is a solution, $y=ce^{rt}$ is a solution. How about $y=v(t)e^{rt}$?