Summary of sections 3.1, 3, 4:
Solve linear homogeneous 2nd order DE with
constant coefficients.

Solve ay” + by’ + cy = 0.

then
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Suppose r = r1, ry are solutions to ar’ +br+c=0
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If r1 # 79, then b — 4ac # 0.

Hence a general solution is y = cje
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If > — 4ac > 0, general sol'n is y = c;e™! + cqe™".

If > — 4ac < 0, change format to linear
combination of real-valued functions instead of
complex valued functions by using Euler’'s formula.

general solution is y = cie®cos(nt) + coe® sin(nt)

where r = d + in

If b — 4ac = 0, 71 = 9, so need 2nd (independent)
solution: te"*

Hence general solution is y = c¢1e™! + cote™.

Initial value problem: use y(to) = yo, ¥'(to) = ¥y, to
solve for ¢;, ¢y to find unique solution.



Ex 1: Solve " — 3¢/
y' =3y —4y =0, y(0) =1, y'(0) =2



Ex 1: Solve 4" — 3y —4y =0, y(0) =1, 4/(0) = 2.

If y = €', then v/ = re’ and y" = r?e’.

r°—3r—4=0= (r—4)(r+1)=0=>r=4,-1.

Hence general solution is y = cie® 4 coe™*



Ex 1: Solve 4" — 3y — 4y =0, y(0) =1, 4'(0) = 2.

If y = €™, then ¢y = re’ and y” = r2e™.

r°—3r—4=0= (r—4)(r+1)=0=>r=4,-1.

Hence general solution is y = cie® 4 coe™*

Solution to IVP: Need to solve for 2 unknowns, ¢; & c¢»



Ex 1: Solve 4" — 3y — 4y =0, y(0) =1, 4'(0) = 2.

If y = €™, then v/ = re’ and y” = r?e'.

r°—3r—4=0= (r—4)(r+1)=0=>r=4,-1.

Hence general solution is y = cie® 4 coe™

Solution to IVP: Need to solve for 2 unknowns, ¢; & c¢»

"hus need 2 egns:

Y= cie* + coe™?, y0)=1 = 1=c +oc
y =dciet — et Y(0) =2 = 2=4¢ — ¢
3

3:561:>61:§and62:1—61:1—5:%

Thus IVP soln: y = 2e* + ze



Ex 2: Solve ¢/ — 3y + 4y = 0.

y = e implies r2 — 3r +4 =0 and hence



Ex 2: Solve ¢/ — 3y + 4y = 0.
y = €' implies r2 — 3r +4 =0 and hence
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Hence general sol'n is y = ciez COS(§ t) + CQGZtsm(‘ft)



Ex 3: 9"
y" — 6y +9y =0



Ex 3: v/ — 6y +9y =0
r’—6r+9=(r—37%=0
Repeated root, r = 3 implies

general solution is y = cje’’ + cote™



Homogeneous linear 2nd order differential equation

R(t)y" + P(t)y + Q(t)y =0



Existence and Uniqueness for LINEAR DEs.

Homogeneous:

g+ p1()y" Y + pa1 ()Y + pa(t)y =0

Non-homogeneous: ¢(t) # 0

y® + p1 )y + 1)y + pa(t)y = g(t)



1st order LINEAR differential equation:

Thm 2.4.1: If p:(a,b) - Rand g : (a,b) - R are
continuous and a < ty < b, then there exists a
unique function y = ¢(t), ¢ : (a,b) — R that
satisfies the

IVP: o +p(t)y = g(t), y(to) = yo

Proof 1: Constructive proof (use integrating factor
to find solution).

Proof 2 outline: Use linearity.



1st order LINEAR differential equation:

Thm 2.4.1: If p: (a,b) > Rand g: (a,b) = R are
continuous and a < ty < b, then there exists a
unique function y = ¢(t), ¢: (a,b) — R that
satisfies the

IVP: o' + p(t)y = g(t), y(to) = yo

Thm: If y = ¢1(t) is a solution to homogeneous
equation, ¢ + p(t)y = 0, then y = co(t) is the
general solution to this equation.

If in addition y = (%) is a solution to
non-homogeneous equation, 3" + p(t)y = g(t), then
y = co1(t) + (1) is the general solution to this
equation.




1st order LINEAR differential equation:

Thm 2.4.1: If p: (a,b) - Rand g : (a,b) — R are
continuous and a < ty < b, then
! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: v/ + p(t)y = g(t), y(ty) = yo

2nd order LINEAR differential equation:

Thm 3.21: If p: (a,b) > R, q: (a,b) — R, and
g : (a,b) — R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: v + p(t)y' + q(t)y = g(t), y(to) = yo, y'(to) =y}




2nd order LINEAR differential equation:

Thm 3.21: If p: (a,b) = R, q: (a,b) = R, and
g : (a,b) — R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o' + p(t)y' + q(t)y = g(t), y(to) = yo, ¥ (to) =y,




2nd order LINEAR differential equation:

Thm 3.21: If p: (a,b) = R, q: (a,b) = R, and
g : (a,b) — R are continuous and a < ty < b, then
3! function y = ¢(t), ¢ : (a,b) — R that satisfies

IVP: o' + p(t)y' + q(t)y = g(t), y(to) = yo, ¥ (to) =y,




Thm 3.2.2: If ¢; and ¢- are two solutions to a
homogeneous linear differential equation

' +pt)y +qt)y=0

then c1¢1 + cogs is also a solution to this linear
differential equation.

Proof of thm 3.2.2:

Since y(t) = ¢;(t) is a solution to the linear
homogeneous differential equation v + py’ +qy = 0
where p and ¢ are functions of ¢ (note this includes
the case with constant coefficients), then



Claim: y(t) = c1¢1(t) + ca¢p2(t) is also a solution to
y'+py +aqy=0

Pt of claim:



Claim: If y = ¢1(t) and y = ¢o(t) are linearly
independent solutions to y” + py’ + qy = 0, then

general solution is y(t) = c1¢1(t) + cogo(t)

That is any solution to this linear 2nd order
homogeneous differential equation can be written as
a linear combination of the linear independent

functions y = ¢1(t) and y = ¢o(t).



Derivation of general solutions:

Solve ay” + by’ + cy = 0. Educated guess y = €',
then

ar?e™ + bre™ + ce™ = 0 implies ar? + br + ¢ = 0,

Suppose 7 = 11, 9 are solutions to ar? +br + ¢ = 0

_ —bEVb2—4ac
Tl; TQ N 2a

If > — 4ac > 0 we guessed e"* is a solution and
noted that any linear combination of solutions is a
solution to a homogeneous linear differential
equation.



Section 3.3: If %> — 4ac < 0, :

Changed format of y = cje"" + c9e™! to linear
combination of real-valued functions instead of
complex valued functions by using Euler's formula:

e = cos(t) + isin(t)

Hence el = edtegint — dtcos(nt) + isin(nt)]
Let ri =d+1n, r9o =d —in

y — Cle’rlt _|_ 62€T2t






Section 3.4: If b — 4ac = 0, then r; = 7.
Hence one solution is y = €"* Need second solution.

If y = e is a solution, y = ce" is a solution.
How about y = v(t)e™?
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