Thm 2.8.1 is translated to origin version of Thm 2.4.2:

Thm 2.8.1: Suppose the functions

$$z=f(t,y)$$
 and $z=rac{\partial f}{\partial y}(t,y)$

are continuous for all t in (-a,a) imes (-c,c),

then there exists an interval $(-h,h) \subset (-a,a)$ such that there exists a unique function $y=\phi(t)$ defined on (-h,h) that satisfies the following initial value problem:

$$y' = f(t, y), y(0) = 0.$$

Proof outline (note this is a constructive proof and thus the proof is very useful).

Given:
$$y'=f(t,y),\ y(0)=0$$
 Eqn (*)
$$f,\ \partial f/\partial y \text{ continuous } \forall (t,y)\in (-a,a)\times (-b,b).$$

Then $y = \phi(t)$ is a solution to (*) iff

$$\phi'(t) = f(t, \phi(t)), \quad \phi(0) = 0 \text{ iff}$$

$$\int_0^t \phi'(s) ds = \int_0^t f(s, \phi(s)) ds$$
, $\phi(0) = 0$ iff

$$\phi(t) = \phi(t) - \phi(0) = \int_0^t f(s, \phi(s)) ds$$

Thus $y = \phi(t)$ is a solution to (*)

iff
$$\phi(t) = \int_0^t f(s, \phi(s)) ds$$

Construct ϕ using method of successive approximation – also called Picard's iteration method.

Let $\phi_0(t) = 0$ (or the function of your choice)

Let
$$\phi_1(t) = \int_0^t f(s, \phi_0(s)) ds$$

Let
$$\phi_2(t) = \int_0^t f(s, \phi_1(s)) ds$$

÷

Let
$$\phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) ds$$

Let
$$\phi(t) = \lim_{n \to \infty} \phi_n(t)$$

To finish the proof, need to answer the following questions (see book or more advanced class):

- 1.) Does $\phi_n(t)$ exist for all n?
- 2.) Does sequence ϕ_n converge?
- 3.) Is $\phi(t) = \lim_{n\to\infty} \phi_n(t)$ a solution to (*).
- 4.) Is the solution unique.

Example: y' = t + 2y. That is f(t, y) = t + 2y

Let $\phi_0(t) = 0$

$$\phi_1(t) = \int_0^t f(s,0)ds = \int_0^t (s+2(0))ds$$
$$= \int_0^t sds = \frac{s^2}{2} \Big|_0^t = \frac{t^2}{2}$$

$$\phi_2(t) = \int_0^t f(s, \phi_1(s)) ds = \int_0^t f(s, \frac{s^2}{2}) ds$$
$$= \int_0^t (s + 2(\frac{s^2}{2})) ds = \frac{t^2}{2} + \frac{t^3}{3}$$

$$\phi_3(t) = \int_0^t f(s, \phi_2(s)) ds = \int_0^t f(s, \frac{s^2}{2} + \frac{s^3}{3}) ds$$
$$= \int_0^t (s + 2(\frac{s^2}{2} + \frac{s^3}{3})) ds = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}$$

Example: y' = t + 2y. That is f(t, y) = t + 2y

$$\phi_3(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}$$

$$\phi_4(t) =$$

Example: y' = t + 2y. That is f(t, y) = t + 2y

$$\phi_3(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}$$

$$\phi_4(t) = \int_0^t f(s, \phi_3(s)) ds$$

$$= \int_0^t f(s, \frac{s^2}{2} + \frac{s^3}{3} + \frac{s^4}{6}) ds$$

$$= \int_0^t (s + 2(\frac{s^2}{2} + \frac{s^3}{3} + \frac{s^4}{6})) ds$$

$$=\frac{t^2}{2}+\frac{t^3}{3}+\frac{t^4}{6}+\frac{t^5}{15}$$

Determine formula for ϕ_n :

Note patterns:

$$\int_0^t s ds = \frac{t^2}{2} =$$

$$\int_0^t \frac{s^2}{2} ds = \frac{t^3}{3 \cdot 2} =$$

$$\int_0^t \frac{s^3}{3\cdot 2} ds = \frac{t^4}{4\cdot 3\cdot 2} = 0$$

$$\int_0^t \frac{s^4}{4 \cdot 3 \cdot 2} ds = \frac{t^5}{5 \cdot 4 \cdot 3 \cdot 2} =$$

Thus look for factorials.

$$\phi_0(t) = 0$$

$$\phi_1(t) = \frac{t^2}{2}$$

$$\phi_2(t) = \frac{t^2}{2} + \frac{t^3}{3}$$

$$\phi_3(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}$$

$$\phi_4(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6} + \frac{t^5}{15} = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{3 \cdot 2} + \frac{t^5}{5 \cdot 3}$$

Thus
$$\phi_n(t) =$$

Claim: Suppose f(t,y)=t+2y, $\phi_0(t)=0$ and $\phi_{n+1}(t)=\int_0^t f(s,\phi_n(s))ds$,

then
$$\phi_n(t) = \sum_{k=2}^{\infty} \frac{2^{k-2}}{k!} t^k$$

Proof by induction on n

Will cover this after exam 1.

Note modification in HW 4.

Proving Convergence

Ratio Test

Suppose we have the series $\sum a_n$. Define,

$$L=\lim_{n o\infty}\Bigl|rac{a_{n+1}}{a_n}\Bigr|$$

Then,

- 1. if L < 1 the series is absolutely convergent (and hence convergent).
- 2. if L>1 the series is divergent.
- 3. if L=1 the series may be divergent, conditionally convergent, or absolutely convergent.

Prove $\phi_n(t) = \sum_{k=2}^{\infty} \frac{2^{k-2}}{k!} t^k$ converges.

Example: Determine convergence of $\sum_{k=5}^{\infty} \frac{2^k}{3^{k+1}} t^{k-1}$

$$\sum_{k=1}^{\infty} \frac{2^k}{3^{k+1}} t^{k-1}$$

Defn:
$$\sum_{k=0}^{\infty} a_k x^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_k x^k$$
$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

Taylor's Theorem: If f is analytic at 0, then for small x (i.e., x near 0),

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$
$$= f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + \dots$$

Example:

$$e^t = \sum_{k=0}^{\infty} \frac{t^k}{k!}$$
 and thus $e^{bt} = \sum_{k=0}^{\infty} \frac{b^k t^k}{k!}$ for t near 0.

$$\phi_n(t) = \sum_{k=2}^n \frac{2^{k-2}}{k!} t^k$$

Thus
$$\phi(t) = \lim_{n \to \infty} \phi_n(t) = \sum_{k=2}^{\infty} \frac{2^{k-2}}{k!} t^k = \frac{1}{4} \sum_{k=2}^{\infty} \frac{2^k}{k!} t^k$$

$$= \frac{1}{4} \left(- - - \right)$$

2.8: Approximating soln to IVP using seq of fns.

The solution $y = \phi(t)$ is the thick cyan curve

$$\phi_0(t) = 0$$

$$\phi_1(t) = \frac{t^2}{2}$$

$$\phi_2(t) = \frac{t^2}{2} + \frac{t^3}{3}$$

$$\phi_3(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6}$$

$$\phi_4(t) = \frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{6} + \frac{t^5}{15}$$

