Give that the solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ $\mathbf{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \mathbf{x}$ x_1, x_2 -plane Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the t, x_2 -plane t, x_1 -plane x_1, x_2 -plane The equilibrium solution for this system of equations is $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ x_2 & 1 \end{vmatrix}$ Plot several direction vectors where raph several trajectories. the slope is 0 and where slope is vertical.

Give that the solution to $\mathbf{x'} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

$$\frac{\sqrt{2}}{X_{i}} = \frac{1}{0} \Rightarrow \frac{X_{2}}{2} = \frac{1}{0} X_{i}$$

Graph the solution to the IVP $\left[egin{array}{c} x_1(0) \ x_2(0) \end{array}
ight] = \left[egin{array}{c} -1 \ 3 \end{array}
ight]$ in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

1 X2 = 3 => 1/2=3 X

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} m{0} \\ m{0} \end{bmatrix}$.

$$\frac{dx_2}{dx_2} =$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

The solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} \left(\begin{bmatrix} c_2 \\ 1 \end{bmatrix} e^{-2t} \right) \left(\begin{bmatrix} c_2 \\ 1 \end{bmatrix} e^{-2t} \right)$ Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$:

The smaller eigenvalue of A is $r_1 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{\hspace{1cm}}$

The larger eigenvalue of A is $r_2 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \underline{\hspace{1cm}}$

The general solution to $\mathbf{x}' = A\mathbf{x}$ is

case: c, + 0 and c + 0

6-2+00

For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t},$

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

$$c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$$
 or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin. $\leftarrow \rightarrow \leftarrow \sim$
- * moves toward the origin.
- approaches the line y = mx with slope m =
- dominate as for foo
- approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: e^{r_1t} or e^{r_2t} ?

 $c_1 \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} e^{r_1 t}$ or $c_2 \begin{vmatrix} w_1 \\ w_2 \end{vmatrix} e^{r_2 t}$? For large **negative** values of t, which term dominates:

Thus for large negative values of t such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin. $\leftarrow \rightarrow -\infty$
- tiny + a[3]e-2t

* moves toward the origin.

- approaches the line y = mx with slope m =
- approaches a line y = mx + b for $b \neq 0$ with slope m =_____N Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Give that the solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-5t} + c \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-5t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

t, x_1 -plane

 t, x_2 -plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

 t, x_2 -plane

 x_1, x_2 -plane

 x_1, x_2 -plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cite{\mathcal{O}} \\ \cite{\mathbf{o}} \end{bmatrix}$.

$$\frac{dx_2}{dx_2} = 0$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

The smaller eigenvalue of A is $r_1 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{\hspace{1cm}}$

The larger eigenvalue of A is $r_2 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \underline{\hspace{1cm}}$

The general solution to $\mathbf{x}' = A\mathbf{x}$ is

Case for when 9 \$ 0, C2 \$ 0

For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$,

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin. $(+ -) + \infty$
- * approaches the line y = mx with slope m =
- * approaches a line y = mx + b for $b \neq 0$ with slope m = Nk. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ? e^{-2t} as $t \to -\infty$

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin
- * moves toward the origin. $+ \rightarrow \infty$
 - approaches the line y = mx with slope m = NA
- * approaches a line y = mx + b for $b \neq 0$ with slope $m = \underline{}$. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

The smaller eigenvalue of A is $r_1 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \underline{\hspace{1cm}}$

The larger eigenvalue of A is $r_2 = \underline{\hspace{1cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \underline{\hspace{1cm}}$

The general solution to $\mathbf{x}' = A\mathbf{x}$ is

Case for when C, + 0, C, +0

ast ->+00

For large **positive** values of t which is larger: e^{r_1t} or e^{r_2t} ?

tiny + C2/3

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \left| egin{array}{c} v_1 \ v_2 \end{array} \right| \, e^{r_1 t} + c_2 \left[egin{array}{c} w_1 \ w_2 \end{array} \right] \, e^{r_2 t},$

 $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$? For large **positive** values of t, which term dominates:

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin. asf) + 00
- * approaches the line y = mx with slope m =
- approaches a line y = mx + b for $b \neq 0$ with slope m = Ncorresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?

 $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$? For large **negative** values of t, which term dominates:

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior t x_1, x_2 plane exhibit the following behavior (select all that apply):

- moves away from the origin.
- * moves toward the origin as f => + 06
- * approaches the line y = mx with slope m =
- approaches a line y = mx + b for $b \neq 0$ with slope $m = \underline{\hspace{1cm}}'/\mathcal{O}$. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other. will by parallel " to I

Give that the solution to $\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

 x_1, x_2 -plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

$$\frac{dx_2}{dx_2} = \frac{9X_1 + 5X_1}{2X_1}$$

Plot several direction vectors where the slope is and where slope is vertical.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

$$\mathbf{x}_2 = \frac{1}{6} \mathbf{x}_1$$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

 x_1, x_2 -plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Plot several direction vectors where

the slope is 0 and where slope is vertical.

aph several trajectories.

For large **positive** values of t which is larger: e^{r_1t} or e^{r_2t} ? pst >

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t},$

 $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$? For large **positive** values of t, which term dominates:

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin. $+\rightarrow+\infty$
- * moves toward the origin.
- * approaches the line y = mx with slope m =
- approaches a line y = mx + b for $b \neq 0$ with slope m =Note this case corresponds to where both $||e_1\mathbf{v}||e^{r_1t}$ and $||e_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

huge.

parollel

For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?

 $c_1 \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} e^{r_1 t}$ or $c_2 \begin{vmatrix} w_1 \\ w_2 \end{vmatrix} e^{r_2 t}$? For large **negative** values of t, which term dominates:

Thus for large negative values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin. E -> + & * moves toward the origin. \bot \longrightarrow - \longrightarrow approaches the line y = mx with slope m
 - approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Slope field
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 9x_1 + 5x_2 \end{bmatrix}$$

$$X_1' = \frac{dX_1}{dt} = 2x_1$$

$$X_2' = \frac{dX_2}{dt} = 4x_2$$

$$\frac{dX_2}{dt} = \frac{dx_1}{dt} = \frac{dx_1}{dt}$$

$$\frac{dX_2}{dx_1} = \frac{dx_2}{dt}$$

$$\frac{dX_2}{dx_1} = \frac{2x_1}{dt}$$

$$\frac{dX_2}{dx_1} = \frac{2x_1}{dt}$$

$$5lop = \infty$$

$$2x_i = 0$$

$$x_i = 0$$