Quiz 3 SHOW ALL WORK

\qquad
[20] 1.) Solve $y^{\prime \prime}+4 y^{\prime}-5 y=20+12 e^{t}$
Step 1: Solve homogeneous: $y^{\prime \prime}+4 y^{\prime}-5 y=0$
$r^{2}+4 r-5=(r+5)(r-1)=0$. Thus $r=-5,1$. Thus homogeneous solution is $y=$ $c_{1} e^{-5 t}+c_{2} e^{t}$

Step 2a: Solve $y^{\prime \prime}+4 y^{\prime}-5 y=20$
If $y=A$, then $-5 A=20$ and $A=-4$. Thus $y=-4$ is a nonhomogeous solution to $y^{\prime \prime}+4 y^{\prime}-5 y=20$

Step 2b: Solve $y^{\prime \prime}+4 y^{\prime}-5 y=12 e^{t}$
$y=e^{t}$ is a homogeneous solution, so multiply standard guess $\left(y=A e^{t}\right)$ by t.
Let $y=A t e^{t}$, then $y^{\prime}=A e^{t}+A t e^{t}$, and $y^{\prime}=A e^{t}+A e^{t}+A t e^{t}=2 A e^{t}+A t e^{t}$
$2 A e^{t}+A t e^{t}+4\left(A e^{t}+A t e^{t}\right)-5 A t e^{t}=12 e^{t}$
$2 A e^{t}+A t e^{t}+4 A e^{t}+4 A t e^{t}-5 A t e^{t}=12 e^{t}$
$2 A e^{t}+4 A e^{t}=12 e^{t}$
$6 A e^{t}=12 e^{t}$ and $A=2$. Thus $y=2 t e^{t}$ is a nonhomogeous solution to $y^{\prime \prime}+4 y^{\prime}-5 y=12 e^{t}$
Thus the general non-homogeneous solution is $y=c_{1} e^{-5 t}+c_{2} e^{t}-4+2 t e^{t}$

You were not asked to solve an initial value problem, but if you were (for example):
Last step: Solve initial value problem: $y(0)=-4, y^{\prime}(0)=8$
$y=c_{1} e^{-5 t}+c_{2} e^{t}-4+2 t e^{t}: \quad-4=c_{1}+c_{2}-4$. Thus $0=c_{1}+c_{2}$ and $c_{1}=-c_{2}$
$y=-5 c_{1} e^{-t}+c_{2} e^{t}+2 e^{t}+2 t e^{t}: \quad 8=-5 c_{1}+c_{2}+2=5 c_{2}+c_{2}+2=6 c_{2}+2$. Hence $c_{2}=1, c_{1}=-1$

Thus the IVP solution is is $y=-e^{-5 t}+e^{t}-4+2 t e^{t}$

Answer: $y=c_{1} e^{-5 t}+c_{2} e^{t}-4+2 t e^{t}$

