[8] 3.) The stream plot in the x_1 - x_2 plane for a system of two first order differential equations is shown below. In addition to determining and classifying the 4 equilibrium solutions, also draw the trajectory satisfying the initial value $(x_1(0), x_2(0)) = (0, -2)$. Also describe the basins of attraction for each asymptotically stable equilibrium solutions.

 $(x_1(t), x_2(t)) = (0, 0)$ is an unstable saddle.

 $(x_1(t), x_2(t)) = (2, 0)$ is an unstable saddle.

 $(x_1(t), x_2(t)) = (1, 1)$ is an asymptotically stable spiral.

basin of attraction: $x_1 < 2$ and $x_2 > 0$.

 $(x_1(t), x_2(t)) = (-2, -2)$ is an asymptotically stable spiral.

basin of attraction: $x_1 < 2$ and $x_2 < 0$.

[5] 4.) Use Picard's iteration method to find a degree 3 polynomial approximation for the solution to the initial value problem, $y' = y + 6t^2$, y(0) = 0. Start with $\phi_0(t) = 0$.

$$\phi_1(t) = \int_0^t f(s,\phi_0(s)) ds = \int_0^t (\phi_0(s) + 6s^2) ds = \int_0^t (6s^2) ds = \int_0^t 2s^3|_0^2 = 2t^3$$

Approximation: $y = 2t^3$

[7] 5.) Using power series to find a degree 3 polynomial approximation for the general solution to $y'-y=6x^2$ for x near 0

$$y = \sum_{n=0}^{\infty} a_n x^n, \ y' = \sum_{n=1}^{\infty} a_n n x^{n-1}$$

$$\sum_{n=1}^{\infty} a_n(n) x^{n-1} - \sum_{n=0}^{\infty} a_n x^n = 6x^2$$

$$\sum_{n=0}^{\infty} a_{n+1}(n+1)x^n - \sum_{n=0}^{\infty} a_n x^n = 6x^2$$

$$\sum_{n=0}^{\infty} [a_{n+1}(n+1) - a_n] x^n = 6x^2$$

$$a_{n+1}(n+1) - a_n = 0$$
 for $n = 0, 1$ and $n > 2$

$$a_{n+1} = \frac{a_n}{n+1}$$
 for $n = 0, 1$ and $n > 2$

For
$$n = 0$$
: $a_1 = \frac{a_0}{1}$

For
$$n = 1$$
: $a_2 = \frac{a_1}{2} = \frac{a_0}{2}$

For
$$n=2$$
: $a_3(3)-a_2]x^2=6x^2$ implies $3a_3-a_2=6$ and thus $a_3=\frac{a_2+6}{3}=\frac{a_2}{3}+2=\frac{a_0}{6}+2$

Answer:
$$y = a_0 + a_0 x + \frac{a_0}{2} x^2 + (\frac{a_0}{6} + 2) x^3$$

Note for this particular example, the approximation for the IVP solutions are the same for both 4 and 5. This is NOT usually the case. Different methods to approximate solutions will generally give different approximations, but in the limit they should be the same.

Quiz 5 SHOW ALL WORK Nov 30, 2018

[13] 1.) Find all equilibrium solutions and classify them (stable, asymptotically stable, semi-stable, unstable and if system of DEs, node, saddle, spiral, center). For the non-linear system of DEs, state all possibilities for type of equilibrium solution.

1a.)
$$y' = (y-3)(y-5)^8$$
 $y = 3$ is unstable, $y = 5$ is semi-stable.

1b.)
$$x' = y - 1$$
, $y' = (x - 3)y$

If
$$y - 1 = 0$$
, then $y = 1$

If
$$y = 1$$
, then $(x - 1)y = x - 3 = 0$. Thus $x = 3$.

Jacobian matrix:
$$\begin{bmatrix} 0 & 1 \\ y & x-3 \end{bmatrix}$$

For
$$(x,y)=(1,3)$$
, Jacobian matrix is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\begin{vmatrix} -r & 1 \\ 1 & -r \end{vmatrix} = r^2 - 1 = (r-1)(r+1) = 0.$$

Thus r = -1.1, i.e, one positive and one negative eigenvalue.

Thus (x(t), y(t)) = (1, 3) is an unstable saddle.

[7] 2.) The slope field for a first order differential equation is shown below. In addition to determining and classifying all equilibrium solutions (if any), also draw the trajectories satisfying the initial values y(0) = 3 and y(1) = 0.

No equilibrium solution.

Unstable quilibrium solution: y = 2.