Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to ay'' + by' + cy = 0,

If ψ is a solution to

$$ay'' + by' + cy = g(t)$$
 [*],

Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist constants c_1, c_2 such that

$$\gamma = \psi + c_1\phi_1(t) + c_2\phi_2(t)$$

 $\gamma=\psi+c_1\phi_1(t)+c_2\phi_2(t)$ Or in other words, $\psi+c_1\phi_1(t)+c_2\phi_2(t)$ is a general solution to [*].

Proof:

Define
$$L(f) = af'' + bf' + cf$$
.

Recall L is a linear function.

Let $h = c_1\phi_1(t) + c_2\phi_2(t)$. Since h is a solution to the differential equation, ay'' + by' + cy = 0,

ah"+6h"+6h=0

ay 4 + 6+ 1+ c4 =

Since ψ is a solution to ay'' + by' + cy = g(t),

We will now show that $\psi + c_1 \phi_1(t) + c_2 \phi_2(t) = \psi + h$ is also a solution to [*].

We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0.

Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and

$$c_1\phi_1(t) + c_2\phi_2(t)$$
 is a general solution to $ay'' + by' + cy = 0,$

there exist constants c_1, c_2 such that

$$\gamma-\psi=$$

Thus
$$\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$$
.

11.)
$$y'' - 4y' - 5y = 4\sin(3t) + 5\cos(3t)$$

12.)
$$y'' - 4y' - 5y = 4e^{-t}$$

To solve
$$ay'' + by' + cy = g_1(t) + g_2(t) + ...g_n(t)$$
 [**]

- S1.) Find the general solution to ay'' + by' + cy = 0: homo $c_1\phi_1+c_2\phi_2$
 - 2.) For each g_i , find a solution to $ay'' + by' + cy = g_i$:

includes plugging guessed solution ψ_i into $ay'' + by' + cy = g_i.$

The general solution to [**] is

$$c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + ...\psi_n$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).