Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve
$$x = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \times e$$
 value x

Step 1: Find eigenvalues:

$$det(A-rI) = \begin{bmatrix} -2-r & 0 \\ 21 & 5 \end{bmatrix} = (-2-r)(5-r) = (21)(0) = 0$$

$$x = -2, 5$$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-rI)v = 0$

$$x = -2 : A - (-2I) = A + 2I = \begin{bmatrix} -2+2 & 0 \\ 21 & 5+2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix}$$

Solve $(A+2I)v = 0$: $\begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix}$

$$x = \begin{bmatrix} -2+2 & 0 \\ 21 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 7 \end{bmatrix}$$

Solve $(A+2I)v = 0$: $\begin{bmatrix} -2-5 & 0 \\ 21 & 5-8 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 0 \end{bmatrix}$

Solve $(A+2I)v = 0$: $\begin{bmatrix} -2-5 & 0 \\ 21 & 5-8 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 0 \end{bmatrix}$

Solve $(A+2I)v = 0$: $\begin{bmatrix} -2-5 & 0 \\ 21 & 5-8 \end{bmatrix} = \begin{bmatrix} -7 & 0 \\ 21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 21 & 0 \end{bmatrix}$

For this IVP solution:

$$x_1(i) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \quad \text{IVP solution:}$$

$$x_1(i) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \quad \text{IVP solution:}$$

Solve for x_2 in terms of x_2 : $d_1v_1d_2$ e

$$\frac{X_2}{X_1} = \frac{3e^{-2t}}{-1e^{-t}} = \frac{3}{-1} X_1$$

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} t^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the t, x_1 -plane t, x_2 -plane

$$t, x_1$$
-plane

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the $\begin{bmatrix} x_1(0) \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$

$$X = \frac{1}{3} X_1$$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mathcal{O} \\ \mathcal{O} \end{bmatrix}$.

$$\frac{dx_2}{dx_1} =$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Find the equilibrium solution(s) for x' = Ax

Recall a solution is an equilibrium solution iff $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

<u>Case 1</u> (not emphasized/covered): det(A) = 0.

In this case, $A\mathbf{x}=\mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A\mathbf{v}=0\mathbf{v}$

Case 2: $det(A) \neq 0$.

Then Ax = 0 has a unique solution, $x = \bigcirc$

Thus if $det(A) \neq 0$, $\mathbf{x} = \int_0^{\mathcal{O}} \left(\text{is the only equilibrium solution of } \mathbf{x}' = A\mathbf{x} \right)$

Slope fields:

* For complex eigenvalue case, one slope is needed.

* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does not need to be that accurate.

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

$$rac{dx_1}{dt} =$$

$$\frac{dx_2}{dt} =$$

$$rac{dx_2}{dx_1} =$$

Slope 0:

Slope ∞ :

e. valu 5, -2
Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$:
The smaller eigenvalue of A is $r_1 = 2$. An eigenvector corresponding to r_1 is $\mathbf{v} = 3$
The larger eigenvalue of A is $r_2 = 5$. An eigenvector corresponding to r_2 is $\mathbf{w} = 7$
The general solution to $\mathbf{x}' = A\mathbf{x}$ is
X = a[o]est + a[3]e or swith
For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ? e^{-2t}
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is
$\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t},$
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
26 56
For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?
For large negative values of t , which term dominates $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin. negative exp
* moves toward the origin. $p = y = y = y = y = y = y = y = y = y = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

$$\frac{\mathbf{x}_2}{\mathbf{x}_1} = \frac{\mathbf{x}_2}{\mathbf{x}_1} = \frac{\mathbf{x}_2}{\mathbf{x}_2} = \frac{\mathbf$$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

$$\mathbf{s} ext{ is } egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} \mathcal{O} \ \mathcal{O} \end{bmatrix}$$

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

$$\frac{dx_2}{dx_2} =$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

$$\mathbf{x}_2 = \frac{1}{C} \mathbf{x}_1$$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

$$\frac{dx_2}{dx_2} =$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

aph several trajectories.

Answer the following questions for $A = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$:
The smaller eigenvalue of A is $r_1 = \frac{2}{3}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$
The larger eigenvalue of A is $r_2 = 5$. An eigenvector corresponding to r_2 is $\mathbf{w} = 70$
The general solution to $\mathbf{x}' = A\mathbf{x}$ is
For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ?
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is
$\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{\mathbf{r}_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{\mathbf{r}_2 t}$
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$? Thus for large positive values of t , such trajectories (where $c_1 c_2 \neq 0$) when projected into the x_1, x_2
plane exhibit the following behavior (select all that apply):
* moves away from the origin. positive exp
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = \underline{\qquad \qquad }$ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
24 05t
For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?
For large negative values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $\left(c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.) positive exp
* moves toward the origin.
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.

Solutions: X = Tert where Visan evector w/ Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ Step 1: Find eigenvalues: Matrix is triangular = e.valver are on the diagoni $det(A-rI) = \begin{bmatrix} -2-r \\ -9 \end{bmatrix} = (-2-1)(-5-1) - (-9)(0) \neq 0$ => r=-2,-5 6 Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-rI)\mathbf{v} = \mathbf{0}$ $\gamma = -2: A - (-2I) = A + 2I = \begin{bmatrix} -2+2 & 0 \\ -9 & -5+2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -9 & -3 \end{bmatrix}$ Solve $(A+2I)\vec{v}=\vec{o}: \begin{bmatrix} 0 & 0 & 0 \\ -9 & -3 \end{bmatrix} \begin{bmatrix} -1/3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ DV= [-3] or [-3] or [+3] or [+3] or $T = -5: A - (-51) = A + 5I = \begin{bmatrix} -2 + 5 & 0 \\ -9 & -5 + 5 \end{bmatrix} = \begin{bmatrix} 7+3 & 0 \\ 9 & 0 \end{bmatrix}$ Solve (Ar51) = 0: [+3 0] [0] = [0 (1 V = [170]3/01 General solution: X = c, $\begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c$, $\begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ Special case $(c_1 = 1, c_2 = 0)$ Initial Value: $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, IVP solution: $X = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ IVP solution: $\frac{\sqrt{2}}{\sqrt{3}}$ For this IVP solution: Solve for x_2 in terms of x_2 : divide $= (X_2 = \frac{5}{1})$

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$: $\longrightarrow \mathcal{V} = -5$,
The smaller eigenvalue of A is $r_1 = \underline{-5}$. An eigenvector corresponding to r_1 is $\mathbf{v} = 0$
The larger eigenvalue of A is $r_2 = \frac{2}{3}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \frac{2}{3}$. The general solution to $\mathbf{x}' = A\mathbf{x}$ is
The general solution to $\mathbf{x}' = A\mathbf{x}$ is
$\overline{X} = C_1 \left[\begin{array}{c} 0 \end{array} \right] e^{-St} + C_2 \left[\begin{array}{c} -1 \\ 3 \end{array} \right] e^{-2t}$
For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ?
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is
$\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t},$ $\begin{bmatrix} -\frac{1}{3} \\ \frac{1}{2} \end{bmatrix} e^{-\frac{1}{2} t}$
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves toward the origin & hegative expenses
* moves away from the origin. * moves toward the origin \leftarrow $negative exponfill$ * approaches the line $y = mx$ with slope $m = \frac{3}{1 + x} = \frac{2}{3} = \frac$
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?
For large negative values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin. (* moves toward the origin. Encyation exp going Compation to Negation to Value
* approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = \underline{\hspace{1cm}}$. Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.

Find the equilibrium solution(s) for x' = Ax

Recall a solution is an equilibrium solution iff $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

<u>Case 1</u> (not emphasized/covered): det(A) = 0.

In this case, $A\mathbf{x}=\mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A\mathbf{v}=0\mathbf{v}$

Case 2: $det(A) \neq 0$.

Then Ax = 0 has a unique solution, x = C

Thus if $det(A) \neq 0$, $\mathbf{x} = \begin{bmatrix} C \\ 0 \end{bmatrix}$ is the only equilibrium solution of $\mathbf{x}' = A\mathbf{x}$

Slope fields:

* For complex eigenvalue case, one slope is needed.

* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does **not** need to be that accurate.

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

$$rac{dx_1}{dt} =$$

$$\frac{dx_2}{dt} =$$

$$rac{dx_2}{dx_1} =$$

Slope 0:

Slope ∞ :

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

$$\frac{\mathbf{x}_2}{\mathbf{x}_1} = \frac{1}{0} \implies \mathbf{x}_2 = \frac{3}{0} \mathbf{x}_1$$
Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the t, x_1 -plane
$$t, x_2$$
-plane
$$x_1, x_2$$
-plane

$$\frac{dx_2}{dx_1} = \underline{\hspace{1cm}}$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Give that the solution to
$$\mathbf{x'} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \emptyset \\ \emptyset \end{bmatrix}$.

$$\frac{dx_2}{dx_1} =$$

V=AX = X = Vert where V is an e. rector whe value r Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ Step 1: Find eigenvalues: Step 1: Find eigenvalues: $det(A-ri) = \begin{bmatrix} 2-r & 0 \\ 9 & 5-r \end{bmatrix} = (2-r)(5-r) - 9(9) =$ =7 4=2,5 Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-rI)\mathbf{v} = \mathbf{0}$ $\gamma = 2: A - 2I = \begin{bmatrix} 2 - 2 & 0 \\ 9 & 5 - 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 9 & 3 \end{bmatrix}$ Solve $(A-2I)\vec{v}=0$: $\begin{bmatrix} 0 & 07 \\ 9 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $= \overline{V} = \begin{bmatrix} -1/3 \end{bmatrix} \text{ or } \begin{bmatrix} -3/3 \end{bmatrix} \text{ or } \begin{bmatrix} -3/3 \end{bmatrix} \text{ or }$ 7=5:A-5 I = [2-50] = [-30] Solve $(A-5I) \overrightarrow{v} = 0 = 0$ $\begin{bmatrix} -3 & 0 \\ 9 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Special case <1 = 1, 62 = 0 IVP solution: $\overline{X} = \overline{2}$ \longrightarrow Initial Value: $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, For this IVP solution: Solve for x_2 in terms of x_2 : divad- $=\frac{3e^{3t}}{3t}=\frac{3}{3}$ => $X_2=\frac{3}{4}$ X,

$$C_1 = C_2 = 0 \Rightarrow \hat{X} = 0$$

Give that the solution to $\mathbf{x'} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

$$\frac{\sqrt{2}}{X_{i}} = \frac{1}{0} \Rightarrow \frac{\chi_{2}}{\chi_{i}} = \frac{1}{0} \chi_{i}$$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

1 X2 = 3 => 1/2=3 X

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 in the

$$t, x_1$$
-plane

$$t, x_2$$
-plane

$$x_1, x_2$$
-plane

The equilibrium solution for this system of equations is
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \emptyset \\ \emptyset \end{bmatrix}$$
.

$$\frac{dx_2}{dx_1} =$$

Cranh several trajectories

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$.

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the t, x_1 -plane t, x_2 -plane

$$\frac{dx_2}{dx_1} = \underline{\hspace{1cm}}$$

Plot several direction vectors where the slope is 0 and where slope is vertical.

 x_1, x_2 -plane

 x_1, x_2 -plane

constant soln

Find the equilibrium solution(s) for x' = Ax

Recall a solution is an equilibrium solution iff $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

Case 1 (not emphasized/covered): det(A) = 0.

In this case, $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A\mathbf{v} = 0\mathbf{v}$

Case 2: $det(A) \neq 0$.

Then $A\mathbf{x} = \mathbf{0}$ has a unique solution, $\mathbf{x} = \bigcirc$

Thus if $det(A) \neq 0$, $\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}$ is the only equilibrium solution of $\mathbf{x}' = A\mathbf{x}$

Slope fields:

* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does not need to be that accurate.

$$\text{For}\, \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

$$\frac{dx_1}{dt} =$$

$$\frac{dx_2}{dt} =$$

$$\frac{dx_2}{dx_1} =$$

Slope 0:

Slope ∞ :

^{*} For complex eigenvalue case, one slope is needed.

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$
The smaller eigenvalue of A is $r_1 = \frac{2}{2}$. An eigenvector corresponding to r_1 is $\mathbf{v} = \frac{2}{3}$
The larger eigenvalue of A is $r_2 = \frac{5}{2}$. An eigenvector corresponding to r_2 is $\mathbf{w} = \frac{5}{2}$
The general solution to $x' = Ax$ is $ X = C C J e + C J J e^{-2t} $
For large positive values of t which is larger: e^{r_1t} or e^{r_2t} ? c_1 nor $c_2 = 0$
For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is
$\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t},$ For large positive values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
For large positive values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large positive values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply): * moves away from the origin. * moves toward the origin. * approaches the line $y = mx$ with slope $m = $
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.
For large negative values of t which is larger: e^{r_1t} or e^{r_2t} ?
For large negative values of t , which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?
Thus for large negative values of t , such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):
* moves away from the origin.
* moves away from the origin. * moves toward the origin. 3/
* approaches the line $y = mx$ with slope $m = \underline{\hspace{1cm}}$
* approaches a line $y = mx + b$ for $b \neq 0$ with slope $m = $ Note this case corresponds to where both $ c_1\mathbf{v} e^{r_1t}$ and $ c_2\mathbf{w} e^{r_2t}$ are large, but one is significantly larger than the other.