
Section 5.4 continued

Solve x2y′′ − 2xy′ = 0 (*).

We could solve by letting v = y′, but we will instead use 5.4 methods

Note x is an ordinary point iff x ̸= 0 (y′′ − 2
xy

′ = 0.)
x = 0 is a singular point.

Note x2xr−2r(r − 1) − 2xxr−1r = 0 implies r2 − r − 2r = 0 and
recall y = (−x)r gives same equation for r as y = xr.

Thus y = |x|r implies r2 +(α− 1)r+β = r2 − 3r+0 = r(r− 3) = 0

Thus r = 0, 3. Thus y = |x|0 = 1 and y = |x|3 are solutions to (*)

Since (*) is a linear equation, the general solution is y = c1+ c2|x|3.
Note an equivalent general solution is y = k1 + k2x

3.

Both forms are valid for all x.

When is a unique solution to the following initial value
problem guaranteed?

x2y′′ − 2xy′ = 0, y(t0) = y0, y′(t0) = y1 (**)

y′′ − 2
xy

′ = 0, y(t0) = y0, y′(t0) = y1

Since 2
x and the zero constant function are continuous on

(−∞, 0) ∪ (0,∞),

(**) has a unique solution for t0 < 0 and this solution exists on
(−∞, 0).

(**) has a unique solution for t0 > 0 and this solution exists on
(0,∞).

There are an infinite number of solutions for y(0) = a, y′(0) = 0.

1



How is xr defined:

If n is a positive integer: xn = x · x · ... · x

If m is a positive integer: If f(x) = xm, then f−1(x) = x
1
m and

x
n
m = (xn)

1
m

Let r ≥ 0. Let rn be any sequence consisting of positive rational
numbers such that limn→∞rn = r. Then

xr = limn→∞xrn .

See more advanced class for why the above is well-defined.

If r < 0, then xr = x−r.

If x is a real number, when is xr a real number?

xn = x · x · ... · x is a real number when n is a positive integer.

If f(x) = xn, then the image of f =

{
real numbers n odd
[0,∞) n even

Thus if f−1(x) = x
1
n is real-valued, then

the domain of f−1 is

{
real numbers n odd
[0,∞) n even

In complex analysis,
(

1+i
√
3

2

)3

= −1, (−1)3 = −1,
(

1−i
√
3

2

)3

= −1

Recall
(
e

iπ
3

)3

= (cosπ
3 + isinπ

3 )
3 = −1

Complex numbers are also roots of unity:(
e

2iπ
3

)3

= 1
(
e

−2iπ
3

)3

= 1, (1)3 = 1
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Solve x2y′′ + αxy′ + βy = 0. Let y = xr,
y′ = rxr−1, y′′ = r(r − 1)xr−2 (case when y = (−x)r is similar).

x2xr−2r(r − 1) + αxxr−1r + βxr = 0

xr[r2 − r + αr + β] = 0 for all x implies r2 + (α− 1)r + β = 0

Thus xr is a solution iff r =
−(α−1)±

√
(α−1)2−4β

2

Case 1: Two real roots, r1, r2.

General solution is y = c1|x|r1 + c2|x|r2

Case 2: Two complex roots, ri = λ± iµ :

Convert solution to form without complex numbers.

Note |x|±iµ = eln(|x|
±iµ) = e(±iµ)ln|x| = ei(±µln|x|)

= cos(±µln|x|) + isin(±µln|x|)
= cos(µln|x|)± isin(µln|x|)

General solution is y = c1|x|r1 + c2|x|r2 = c1|x|λ+iµ + c2|x|λ−iµ

= |x|λ(c1|x|iµ + c2|x|−iµ)

= |x|λ(c1[cos(µln|x|)+ isin(µln|x|)]+c2[cos(µln|x|)− isin(µln|x|)])

= |x|λ([c1 + c2]cos(µln|x|) + i[c1 − c2]sin(µln|x|))

= |x|λ(k1cos(µln|x|) + k2sin(µln|x|))

= k1|x|λcos(µln|x|) + k2|x|λsin(µln|x|)

Case 3: one repeated root, r1 = −(α−1)
2 . (i.e.,

√
(α− 1)2 − 4β = 0):

Thus |x|r1 is a solution. Find 2nd solution.
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Method 1. Reduction of order: Suppose y = u(x)|x|r1 is a solution
to x2y′′ + αxy′ + βy = 0. Plug in and determine u(x)

Method 2: Let L(y) = x2y′′ + αxy′ + βy where y′ = dy
dx .

L(|x|r) = |x|r(r − r1)
2

∂
∂r [L(|x|

r)] = ∂
∂r [|x|

r(r − r1)
2] = (|x|r)′(r − r1)

2 + 2|x|r(r − r1) = 0
if r = r1.

Suppose x is constant with respect to r and all the partial derivatives
are continuous. Then

∂
∂r [L(y)] =

∂
∂r [x

2y′′ + αxy′ + βy] = x2 ∂y′′

∂r + αx∂y′

∂r + β ∂y
∂r

= x2 ∂
∂r [

∂2y
∂x2 ] + αx ∂

∂r [
∂y
∂x ] + β ∂y

∂r

= x2 ∂2

∂x2 [
∂y
∂r ] + αx ∂

∂x [
∂y
∂r ] + β ∂y

∂r

= L(∂y∂r ) for all r

L(∂|x|
r

∂r ) = ∂
∂r [L(|x|

r)] = 0 for r = r1.

∂|x|r
∂r = ∂eln|x|r

∂r
∂erln|x|

∂r = (erln|x|)ln|x| = |x|rln|x|

Thus |x|r1 ln|x| is a solution.

Thus general solution is y = c1|x|r1 + c2|x|r1 ln|x|

since by the Wronskian, |x|r1 and |x|r1 ln|x| are linearly independent.
Suppose x > 0 and r1 ̸= 0.∣∣∣∣ xr1 xr1 ln|x|
r1x

r1−1 r1x
r1−1ln|x|+ xr1−1

∣∣∣∣
= xr1(r1x

r1−1ln|x|+ xr1−1)− xr1 ln|x|r1xr1−1

= x2r1−1[r1ln|x|+ 1− ln|x|r1] = x2r1−1 ̸= 0 for x ̸= 0

Other cases for Wronskian are similar.
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