5.3: Series solutions near an ordinary point, part II

A power series solution exists in a neighborhood of xy when the
solution is analytic at xy. I.e, the solution is of the form y =
Y22 gan(x — x9)™ where this series has a nonzero radius of conver-
gence about xg.

(n)
That is f(x) = ;?Lozofn—(!xo)(x — xo)" for x near xg.

(n)
Thus there are constants a,, = fn—(,:co) such that,

f(x) =X gan(z — xo)".

When do we know an analytic solution exists? I.e, when is this
method guaranteed to work?

Special case: P(x)y” + Q(x)y’ + R(x)y =0
Then y"(z) = —[3y' + £y
/
v(@) = Q)Y + Gy + Byt By
If f(z) =32 qan(x — xo)" is a solution where a,, = %, then
ag = f(zo), a1 = f'(zo)

2lag = f"(z0) = —[2f'(z0) + £ f(z0)] = —[%a1 + Zag]

Blag = f"(wo) = —[(B)'f'(z0) + E " (wo) + & f(wo) + £ (0)]

To find a,, we could continue taking derivative including derivatives

of % and % (but much easier to plug series into equation — ie 5.2
method).

Definition: The point zg is an ordinary point of the ODE,

P(x)y” +Qx)y" + R(x)y =0
if % and % are analytic at xg. If g is not an ordinary point, then
it is a singular point.



Theorem 5.3.1: If xg is an ordinary point of the ODE
P(x)y"+Q(x)y"+ R(x)y = 0, then the general solution to this ODE

: = 222 gz — 0)" = aodo(w) + a1 ()

where ¢; are power series solutions that are analytic at zo. The
solutions ¢, ¢1 form a fundamental set of solutions. The radius of
convergence for each of these series solutions is at lgast as large as

the minimum radii of convergence of the series for % and %

Theorem: If P and () are polynomial functions with no common

factors, then y = Q(z)/P(x) is analytic at x( if and only if

P(zg) # 0. Moreover the radius of convergence of Q(x)/P(x) is
min{||zo — z|| | z € C, P(x) = 0}

where ||z — z|| = distance from xg to x in the complex plane.

Ex: x(z 4+ 1)y" + 2+1y + Sy =0

T 1 _
V' + e T ey =0
Then zo = —1,2 are singular points. All other points are ordinary
points.
The zeros of the denominators are x = +i, —1, 2
Radius of convergence for the series solution to this ODE about the

point xq if xg # —1,2 is at least as large as
minimum{+/z2 + (£1)2,|zg — (=1)], |xo — 2|}

If x5 = 0, radius of convergence > 1
If £y = —3, radius of convergence > 2

If xy = 3, radius of convergence > 1

If g = 2 4 (£1)2 =

ooIH
o

% radius of convergence > \/



5.4: Euler equation: 2%y 4+ azy’ + By =0
Let L(y) = 22%y” + axy’ + By

Recall that L is a linear function and if f is a solution to the euler
equation, then L(f) = 0.

Note that if  # 0, then z is an ordinary point and if x = 0, then x
is a singular point.

Suppose z > 0. Claim L(z") = 0 for some value of r
y=a",y =ra" 1y =r(r—1)z"?

2%y + axy’ + By =0

z?r(r —1)z" 2 + azrz"™ ! 4+ Bz" =0

(r? —r)a” + arz™ + Bz" =0

2" [r* —r+ar+ B8] =0

2" [+ (a—1)r+ 8] =0

Thus z" is a solution iff r? + (o — 1)r + 8 =10

Thus 7 — —(oz—l)j:\/2(o¢—1)2—46

Suppose x < 0. Claim L((—z)") = 0 for some value of r
y= (=), y = —r(=a)" 1, y" = r(r = 1)(—a)"

2y’ + axy + By =0

2?r(r —1)(—2)"? — axzr(—z)"" + B(—x)" =0

(1 — ) (~2)" + ar(—z)" + B(~2)" =0



(=) [r2 —r+ar+ 8] =0
(=2)"[r* + (@ = 1)r+ 6] =0

Thus (—x)" is a solution iff 7* + (a — 1)r + 3 =0

Thus r = _(a_l)i\é(a_l)z_w

- {7, 271

Thus |z|" = {?—x) oo

Thus if r = _(a_l)i\/z(a_l)z_w, then y = |z|" is a solution to

Euler’s equation for x # 0.
Case 1. 2 real distinct roots, r1, ro:

General solution is y = c1|z|™ + ca|z|™.
Case 2: 2 complex solutions r; = A+ iu :
Convert solution to form without complex numbers.
Note |z|? it = eln(|z M) o(Ztip)in|z| _ oAln|z| gi(£puln|z|)
= |z|Mcos(£pln|z|) + isin(Luln|x|)]

= |z|*Meos(puln|x|) & isin(uln|x|)]

Case 3: 1 repeated root: Find 2nd solution.



