Solve "/ — 4y’ + 4y =0

r

Using quick 3.4 method. Guess y = €"' and plug into equation to find
72 —4r 4+ 4 = 0. Thus (r — 2)? = 0. Hence r = 2. Therefore general solution

sy = c1€%% + cowe®®.

Use LONG 5.2 method (normally use this method only when other shorter
methods don’t exist) to find solution for values near xy = 0.

Suppose the solution y = f(x) is analytic at xg = 0.

That is f(z) = E%O_OW(.Q? — 0)™ for x near xy = 0.

(n)
Thus there are constants a,, = fn—!(o) such that,

f(x) =35 yan(x —0)" = X2 janx™.

Find a recursive formula for the constants of the series solution to
y" — 4y + 4y = 0 near zo =0

We will determine these constants a,, by plugging f into the ODE.

f(x) = £2 gana™, f'(x) = 522 auma ", f(x) = B2 pann(n — 122,
¥ sanpn(n — 1)a" 2 — 43 ja,na™ "t + 432 ja,2™ = 0.

Y2 qanto(n+2)(n+ 1)a™ — 4322 jan1(n+ )™ + 4322 ja,x™ = 0.
Y2 glante(n+2)(n+1) —4aps1(n+ 1) + 4ay]a™ = 0.

apt2(n+2)(n+1) —4apy1(n+ 1) + 4a, = 0.

_ dapyi1(n+1)—4an,
Unt+2 = " (12)(nil)

Hence the recursive formula (if know previous terms, can determine later
terms) is

o (n+1l)an+i1—an
any2 =4 ( (n—|—2)(:_1—|-1) )



(n+1l)ant+1—an
(n+2)(n+1)

Given the recursive formula, a,,2 =4 ( >, determine a,,.

Determine formula for a; by noticing patterns. Note: It is easier to notice
patterns if you do NOT simplify too much.

Find the first 6 terms of the series solution

n=~0: a2:4(‘z§)_(‘f§>

(2001 g (@@O(EE) -\ | (4(ar—a0)—as
1: as= 4( @) ) =4 ( B2 = 4( 302 )

n =
g (g
1 o) - (L) () )|
_ g [ )3—(“1;“0)) _ 4 <(3a1—4ao§!—(a1—ao)) _ 4 <2a1(§!§,a0)
n=3w =1 (Ge) =4 (TG

2a1 —3ag\ _ (3a1 —4ag
_ 4 (4( 31! )5 ( 31 )) —4 (4(2@1—3agz;!§3a1—4a0)> — 4 <5a51(;g)a0)

f(x) ~ aptarz+4 (U500 ) p2 44 (30-290) 344 (2“1@;’“0> 444 (5“51(5!8)GO> ;1;5I

Recall f(z) = agpo(x) + a1¢1(x) for linearly independent solutions ¢y and
¢1 to equation y’ — 4y’ + 4y = 0.

Find the first 5 terms in each of the 2 solns y = ¢¢(z) and y = ¢1(x)
gb0~1-|—4( )x —|—4( )x —|—4<(3,))x4—|—4(5_—38!))335

1~ d(F)a® +4(8) % +4 () 2t +4 (58 ) o0

n=1: a3== (i’mgﬂ) — 92 (3&1;4a0)
n=2 a4 = (26013&) — 16 (M) _8(4a1 6ao) _ 93 (4@1;6@0)
n=3: a5 = 4 <5a51(5!8)ao) — 16 (5@1 8ao) — 24 (5@15—!8%)

. 281 (ka; —2(k—1
Hence it appears aj = (kay o (k=1)ao)




Prove that if a,,.o = 4 (“g_lggﬂ-;g;n), then a; — 2 (ka1—2(c—Dao)

2k =1 (ka, k'z(k 1)ao) for k>0

Need to prove ap =

Given: a,4o = 4 (%:2;{2;:5”) for n > 2,

Proof by induction on k.

Suppose k = 0. Then 2@ -2(-Dao) _ 1194y — g
Suppose k = 1. Then 21_1(1(a1)1_!2(1_1)a0) = a
Suppose a = ok~ 1(ka1 k'2(k 1)ao) for k = n,n + 1

Thus 0, — 2n—1(na17—L!2(’n—1)010) and Unyl = 2”((n—|(—71L2|fL11)—!2’na0)

2" (n+42)a1—2(n+1)ao)
(n+2)!

Claim: a, 42 =

2" ((n+1)aq —2na0):| . 2n_1(na1 —2(n—1)ag)

):4 (n+1)[ CESY) !

1 n —Un
An+42 = 4 ((n—|— Jan+1—a

(n+2)(n+1) (n+2)(n+1)

|:2n((n—|—1)a1 —2na0):| _ |:2n_1(na1—2(n—1)a0)i|

n! n!

=4 (n+2)(n+1)

- n— 2((n+1)a1—2nag)]—[na;1—2(n—1)a
= 4yt (BTt

_ on+1 <2(n—|—1)a1—4nao—na1—|—2(n—l)ao) _ on+l ((n—|—2)a1—2(n—|—1)a0)>
o nl(n+2)(n+1) o (n+2)!

Thus f(z) = 22,2 (”alnf(” Dao) pon
n—1 n—1
= a1 230 E By 9gp300 (2=l gn
on=— 1

= ao(-2) 5, TG 4 S,

n!

if these two series converge.



(n—1)27~ 1

For what values of =z does >>°, 3

x" converge

bn—|—1
bn

Ratio test: Suppose we have the series b, . Let L = lim,,— o0

Then, if L < 1, the series is absolutely convergent (and hence convergent).
If L > 1, the series is divergent.

If L = 1, the series may be divergent, conditionally convergent, or absolutely
convergent.

n2™ _n+41
; GRS s 2nx
limp o0 (n—n2n—1 | = limp o0 (nt1)(n—1)
n!
— ; n —
Hence the series converges for all x
o 2771

For what values of x does X2 1Tn 1),x converge

ﬁmn—kl
n!
on—1

—| = limnoo | 37| = 22 limnyoo | 7| = 0
(n—1)!

limp— oo

Hence the series converges for all x

Thus the solution is

and the domain is all real numbers.

L.e., the general solution is f(x) = ag¢po(x) + a1¢1(x)

272 1

where ¢g(x) = (—2) Zozowxn and ¢1(z) = X757, CE

Note we could have replaced the constant ag with —2aq, but the a;’s have

meaning: a, = %. Thus our initial values are ap = f(0) and a3 = f'(0)



In general, to determine if there is a unique solution to the IVP, " — 4y’ +
4y =0, y(zo) = Yo, ¥ (o) = y1, we solve for unknowns ay and a.

y(zo) = aogo(wo) + a1¢1(xo)
Yy (z0) = aogp(zo) + a1 (o)

Note that the above system of two equations has a unique solution for the

$o(zo) @1(x0)
&) (o) ¢a<xo>) 70

In other words the IVP has a unique solution iff the Wronskian of ¢y and
¢1 evaluated at xg is not zero. Recall that by theorem , this also implies
that ¢¢ and ¢, are linearly independent and hence the general solution is

y = appo(x) + a1¢1(x) by theorem.

two unknowns ag and a; if and only if det <

272 1

Show that ¢g(z) = (—2)2;30202”_1%?‘”):5” and ¢1(z) = X732, 2"
are linearly independent by calculating the Wronskian of these
two functions evaluated at xro = 0.

_(1(@) dalw) _ (DT e S, 2o
W(¢17¢2)(2U) - ((bi(ﬂ?) (bZ(x)) - ( (_2) o 2" L(n—1) o non— :1l .

n=1(n—1)lgn—1 n=1(n— 1),LC
_o\o0—1(__
wioneno) = (D ) = (5 )) =10

Hence ¢O(x) = (—2) ’?LOIO 2”_1(75?—1))xn and (bl(x) = %o:lmxn are lin-

2TL—1

early independent

When possible identify the functions giving the series solutions. Recall that

(n) on
by Taylor’s theorem and the ratio test, e** = ¥ g /- .(x) n= 3 Ean
for all x.

n— 1
f(z) = a1 552 " — 209552 T — =t an
o n2"71 n 00 o 2771
= a1 2 g — 2ao2%_, 12 — Lgm + 2a025 g5 "

= (a1 — 2a0) 252 B2 2™ 4 4R o Zran



n—1
= (a1 — 2a0)xX5% (i iz Lt agXoe o2 "

= (a1 — 2a9)x25% ,a: + ag2S% On,x
= (a1 — 2ap)xe®® + age®®

Note we have recovered the solution we found using the 3.4 method.

Note a power series solutions exists in a neighborhood of xy when the solution
is analytic at xg. l.e, the solution is of the form y = X°° ja,(x — xg)"™ where
this series has a nonzero radius of convergence about x.

When do we know an analytic solution exists? I.e, when is this method
guaranteed to work?

Special case: P(x)y” + Q(z)y + R(x)y =0

Then y"(z) = —%y — 35y

Definition: The point xq is an ordinary point of the ODE,

P(z)y” + Q(x)y’ + R(z)y =0
if % and % are analytic at xy.

Theorem 5.3.1: If x¢ is an ordinary point of the ODE P(x)y” + Q(x)y’ +
R(x)y = 0, then the general solution to this ODE is

= X2 jan(x — 20)" = apgpo(x) + a1p1(x)
where ¢; are power series solutions that are analytic at xg. The solutions
oo, 1 form a fundamental set of solutions. The radius of convergence for
each of these series solutions is at least as large as the minimum radii of
convergence of the series for % and %.

Theorem: If P and @) are polynomial functions, then y = Q(x)/P(x) is
analytic at ¢ if and only if P(xg) # 0. Moreover if QQ/P is reduced, the
radius of convergence of Q(z)/P(x) = min{||lxo — z|| | x € C, P(z) = 0}
where ||zg — z|| = distance from z( to x in the complex plane.



