3.7/8 Mechanical Vibrations:

$$mu''(t) + \gamma u'(t) + ku(t) = F_{external}, \quad m, \gamma, k \ge 0$$

 $mg - kL = 0, \qquad F_{damping}(t) = -\gamma u'(t)$

m = mass,

k = spring force proportionality constant,

 $\gamma = \text{damping force proportionality constant}$

 $g = 9.8 \text{ m/sec}^2 \text{ or } 32 \text{ ft/sec}^2.$ Weight = mg.

Electrical Vibrations:

Voltage drop across inductor + resistor + capacitor = the supplied voltage

$$L\frac{dI(t)}{dt} + RI(t) + \frac{1}{C}Q(t) = E(t), \quad L, R, C \ge 0 \text{ and } I = \frac{dQ}{dt}$$

$$LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = E(t)$$

L = inductance (henrys),

R = resistance (ohms)

C = capacitance (farads)

Q(t) = charge at time t (coulombs)

I(t) = current at time t (amperes)

E(t) = impressed voltage (volts).

 $1 \text{ volt} = 1 \text{ ohm} \cdot 1 \text{ ampere} = 1 \text{ coulomb} / 1 \text{ farad} = 1 \text{ henry} \cdot 1 \text{ amperes} / 1 \text{ second}$

Trig background:

$$cos(y \mp x) = cos(x \mp y) = cos(x)cos(y) \pm sin(x)sin(y)$$

Let
$$c_1 = R\cos(\delta), c_2 = R\sin(\delta)$$
 in

$$c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$$

$$= Rcos(\delta) cos(\omega_0 t) + Rsin(\delta) sin(\omega_0 t)$$

$$= Rcos(\omega_0 t - \delta)$$

Amplitude = R

frequency = ω_0 (measured in radians per unit time). period = $\frac{2\pi}{\omega_0}$ phase (displacement) = δ

$$c_1 = R\cos(\delta), c_2 = R\sin(\delta)$$
 implies

$$c_1^2 + c_2^2 = R^2 cos^2(\delta) + R^2 sin^2(\delta) = R^2 (cos^2(\delta) + sin^2(\delta)) = R^2$$

and
$$\frac{Rsin(\delta)}{Rcos(\delta)} = tan(\delta) = \frac{c_2}{c_1}$$

BUT easier to plot to convert Euclidean coordinates $(c_1, c_2) = (R\cos(\delta), R\sin(\delta))$ into polar coordinates $(R, \delta) = (\text{length, angle}).$

3.7: Homogeneous equation (no external force):

$$mu''(t) + \gamma u'(t) + ku(t) = 0, \quad m, \gamma, k \ge 0$$

$$r_1, r_2 = \frac{-\gamma \pm \sqrt{\gamma^2 - 4km}}{2m}$$

Critical damping: $\gamma = 2\sqrt{km}$

$$\gamma^2 - 4km = 0$$
: $u(t) = (c_1 + c_2 t)e^{r_1 t}$

Note
$$r_1 = -\frac{\gamma}{2m} < 0$$
. Thus $u(t) \to 0$ as $t \to \infty$

Overdamped: $\gamma > 2\sqrt{km}$

$$\gamma^2 - 4km > 0$$
: $u(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

Note $r_1, r_2 < 0$.

Thus $u(t) \to 0$ as $t \to \infty$

Example $u(t) = 4e^{-t} - 3e^{-2t}$

If
$$t > 0$$
, $4e^{-t} > 3e^{-2t}$

As $t \to \infty$, $e^{-2t} \to 0$ faster than $e^{-t} \to 0$

If
$$t < 0$$
, $4e^{-t} < 3e^{-2t}$

As $t \to -\infty$, $e^{-2t} \to \infty$ faster than $e^{-t} \to \infty$

Underdamped: $\gamma < 2\sqrt{km}$

$$\gamma^{2} - 4km < 0: \ u(t) = e^{-\frac{\gamma t}{2m}} (c_{1}cos\mu t + c_{2}sin\mu t)$$
$$= e^{-\frac{\gamma t}{2m}} Rcos(\mu t - \delta)$$
where $c_{1} = Rcos(\delta), \ c_{2} = Rsin(\delta)$

 $\mu = \text{quasi frequency}, \frac{2\pi}{\mu} = \text{quasi period}$

Note if $\gamma \neq 0$, then $u(t) \to 0$ as $t \to \infty$

Note if $\gamma = 0$, then

NOTE if $\gamma \neq 0$, then homogeneous solution goes to 0 as $t \to \infty$.

Thus initial values have very little effect on the long-term behaviour of solution if $\gamma \neq 0$.

Note: The larger γ is, the faster the homogeneous solution goes to 0 as $t \to \infty$.

3.8: $F_{external} \neq 0$

$$mu''(t) + \gamma u'(t) + ku(t) = F_{external}, \quad m, \gamma, k \ge 0$$

General solution: $u(t) = c_1\phi_1 + c_2\phi_2 + \psi$

where ϕ_1, ϕ_2 are homogeneous solutions and ψ is a non-homogeneous solution.

NOTE if $\gamma \neq 0$, then homogeneous solution $c_1\phi_1 + c_2\phi_2$ goes to 0 as $t \to \infty$.

Thus if $\gamma \neq 0$, then $u(t) \to \psi$ as $t \to \infty$.

No damping $(\gamma = 0)$ example: u'' + u = cos(t)

Step 1: Solve homogeneous u'' + u = 0 $r^2 + 1 = 0$ implies $r = \pm i$ Homogeneous solution $u(t) = c_1 cos(t) + c_2 sin(t)$

Step 2: Find a non-homogeneous solution.

Guess u(t) =

Plug in plus lots of work implies A = 0 and $B = \frac{1}{2}$

Thus general non-homogeneous solution:

$$u(t) = c_1 cos(t) + c_2 sin(t) + \frac{1}{2} t sin(t)$$

No damping example $u'' + u = cos(\omega t)$ where $\omega \neq 1$.

Step 1: Solve homogeneous u'' + u = 0 $r^2 + 1 = 0$ implies $r = \pm i$ Homogeneous solution $u(t) = c_1 cos(t) + c_2 sin(t)$

Step 2: Find a non-homogeneous solution.

Since
$$\omega \neq 1$$
, guess $u(t) = A\cos(\omega t)$

$$u'(t) = -A\omega\sin(\omega t)$$

$$u''(t) = -A\omega^2\cos(\omega t)$$

Plug into $u'' + u = cos(\omega t)$:

$$-A\omega^2 \cos(\omega t) + A\cos(\omega t) = \cos(\omega t)$$
$$-A\omega^2 + A = 1. \text{ Thus } A(1 - \omega^2) = 1$$

Hence
$$A = \frac{1}{1-\omega^2}$$

Thus general solution is

$$u(t) = c_1 cos(t) + c_2 sin(t) + \frac{1}{1-\omega^2} cos(\omega t)$$

NOTE: Since we do not have damping, we do NOT have a transient solution.

BUT if ω is close to 1, then $\frac{1}{1-\omega^2}$ is large and the term $\frac{1}{1-\omega^2}cos(\omega t)$ dominates.

Trig background:

$$cos(y \mp x) = cos(x \mp y) = cos(x)cos(y) \pm sin(x)sin(y)$$

$$cos(u) + cos(v) = 2cos(\frac{u+v}{2})cos(\frac{u-v}{2})$$

$$cos(u) - cos(v) = -2sin(\frac{u+v}{2})sin(\frac{u-v}{2})$$

$$sin(u) + sin(v) = 2sin(\frac{u+v}{2})cos(\frac{u-v}{2})$$

$$sin(u) - sin(v) = sin(u) + sin(-v) = 2sin(\frac{u-v}{2})cos(\frac{u+v}{2}) \blacksquare$$

Derivation:

Let
$$x = (\frac{u+v}{2})$$
 and $y = (\frac{u-v}{2})$

$$cos(u) = cos((\frac{u+v}{2}) + (\frac{u-v}{2}))$$

$$= cos(\tfrac{u+v}{2})cos(\tfrac{u-v}{2}) - sin(\tfrac{u+v}{2})sin(\tfrac{u-v}{2})$$

$$cos(v) = cos((\frac{u+v}{2}) - (\frac{u-v}{2}))$$

$$= cos(\frac{u+v}{2})cos(\frac{u-v}{2}) + sin(\frac{u+v}{2})sin(\frac{u-v}{2})$$

Ex:
$$u(t) = cos(t) + cos(3t) =$$

Graph:

No damping example $mu'' + ku = cos(\omega t)$.

Step 1: Solve homogeneous
$$mu'' + ku = 0$$

 $mr^2 + k = 0$ implies $r = \pm i\sqrt{\frac{k}{m}}$

Let
$$\omega_0 = \sqrt{\frac{k}{m}}$$
. Then $r = \pm i\omega_0$ and

Homogeneous solution $u(t) = c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$

Step 2: Find a non-homogeneous solution.

IF
$$\omega = \omega_0$$
, guess $u(t) = t[A\cos(\omega t) + B\sin(\omega t)]$

Plug in plus lots of work implies A = 0 and $B = \frac{1}{2\sqrt{mk}}$

Thus general non-homogeneous solution:

$$u(t) = c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t) + \frac{1}{2\sqrt{mk}} tsin(t)$$

IF
$$\omega \neq \omega_0$$
, guess $u(t) = A\cos(\omega t)$

$$u'(t) = -A\omega\sin(\omega t)$$

$$u''(t) = -A\omega^2\cos(\omega t)$$

Plug into $mu'' + ku = cos(\omega t)$:

$$-mA\omega^2\cos(\omega t) + kA\cos(\omega t) = \cos(\omega t)$$
$$-mA\omega^2 + kA = 1. \text{ Thus } A(k - m\omega^2) = 1$$

Hence
$$A = \frac{1}{k - m\omega^2}$$

Thus general solution is

$$u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{1}{k - m\omega^2} \cos(\omega t)$$

NOTE: Since we do not have damping, we do NOT have a transient solution.

BUT if ω^2 is close to $\frac{k}{m}$, then $\frac{1}{k-m\omega^2}$ is large and the term $\frac{1}{k-m\omega^2}cos(\omega t)$ dominates.

Example with small damping $(\gamma = \frac{1}{8} < 2\sqrt{km})$:

Compare book examples (see slides)

$$u'' + \frac{1}{8}u' + u = 3\cos(0.3t), \quad u(0) = 2, \quad u'(0) = 0$$

$$u'' + \frac{1}{8}u' + u = 3\cos(t), \quad u(0) = 2, \quad u'(0) = 0$$

$$u'' + \frac{1}{8}u' + u = 3\cos(2t), \quad u(0) = 2, \quad u'(0) = 0$$

Approximate midterm grades

 $A \ge 52$

A- 50-51

B + 48-49

B 42-47

B- 40-41

C + 38 - 39

C 28-37

C-22-27

D 20-21

F 0-19