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= Gene expression profiling predicts clinical outcome of breast cancer

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy
K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards
R, Friend SH

Alatura 2002 191 31:415(6871):530-6.
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overall outcome. The strongest predictors for metastases (for example, lymph node status and histological
grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or
hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of
patients receiving this treatment would have survived without it. None of the signatures of breast cancer
gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA
microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification
to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor
prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node
negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor
prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene
expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our
findings provide a strategy to select patients who would benefit from adjuvant therapy.

= Data can be downloaded here.



3 columns = patient

middle column (ratio) = data point

log10(Intensity) Log10(ratio) P-value

-1.66
-1.55
-1.71
-1.46
-1.08
-1.61

0.69

rows = genes

-0.299

0.093
-0.215
-0.566
-0.596
-0.195

0.039

6.72E-01
8.93E-01
8.36E-01
2.83E-01
1.17E-01
8.14E-01
5.25E-01




Create Data Matrix
load javaplex

C = csvread('Array5yr.csv',2,1,[2,1,3,21])
C(1, 2)

fori=1:7 D(:,i)=C(:,3*i-1); end
R = transpose(D)

size(R)



Use standard Euclidean Metric:

m_space = metric.impl.EuclideanMetricSpace(R);
m_space.getPoint(0)
m_space.distance(m_space.getPoint(0), m_space.getPoint(1))

sqrt([R(1,1) - R(2, 1)]*2 + [R(1,2) - R(2,2)]"2)
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Extracting insights from the shape
of complex data using topology P.
Y. Lum, G. Singh, A. Lehman, T.
Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, G.
Carlsson (2013)
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Topology based data analysis identifies a subgroup of breast cancers

with a unique mutational profile and excellent survival

Monica Nicolau, Arnold J. Levineb,1, and Gunnar Carlsson, PNAS 2011



Choose your own distance matrix:
dist = ones(7) - eye(7)
dist_space = metric.impl.ExplicitMetricSpace(dist);

dist_space.distance(0,1)



Calculate Vietoris Rips Complex
max_dimension = 3;
max_filtration_value = 4;
num_divisions = 100;

stream = api.Plex4.createVietorisRipsStream(R,
max_dimension,max_filtration_value, num_divisions);
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Calculate Persistence

persistence
=api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

intervals = persistence.computelntervals(stream)
intervals = persistence.computeAnnotatedintervals(stream)
betti_numbers_array = infinite_barcodes.getBettiSequence()

betti_numbers_string = infinite_barcodes.getBettiNumbers()



options.filename =’small_data’
options.max_filtration _value = max_filtration _value
options.max_dimension = max_dimension — 1
plot_barcodes(intervals, options)



Run on entire set:

load_javaplex;

clear C; clear D; clear R;

C = csvread('Array5yr.csv',2,1);

fori=1:35 D(:,i) =C(:,3*i-1); end

R = transpose(D);

stream = api.Plex4.createVietorisRipsStream(R,
max_dimension,max_filtration_value, num_divisions);

persistence
=api.Plex4.getModularSimplicialAlgorithm(max_dimension, 2);

intervals = persistence.computelntervals(stream)
options.filename ="data’;
options.max_filtration_value = max_filtration_value;
options.max_dimension = max_dimension - 1;
plot_barcodes(intervals, options)



