Persistent Holes in the Universe

Pratyush Pranav
Kapteyn Astronomical Institute

Institute for Maths and its Applications, Minneapolis
14th Oct, 2013
Rien van de Weygaert
Kapteyn Astronomical Institute

Herbert Edelsbrunner
Institute of Science and Technology, Austria

Gert Vegter
Johan Bernoulli Institute of CS and Math

Bernard Jones
Kapteyn Astronomical Institute
Outline

• Cosmic web & CMB: description and challenges
• Why (multi-scale) topology?
• Persistence: multi-scale topology
• Gaussian random fields & LSS: results
• Morse geometry and filament detection
• Conclusion
Cosmic Web & Cosmic Microwave Background
Cosmic Web: complications

- Discretely sampled: galaxies (observation) & particles (N-body simulations)
- Complex structural connectivity
- Lack of structural symmetry
- Intrinsic multi-scale nature
- Wide range of densities
Cosmic Microwave Background: Edge of the visible universe

- Progenitor of LSS: quantum fluctuations in infant Universe (CMB)

- Earliest View of our Cosmos: the Universe 379,000 years after the Big Bang

- Described as near-perfect (?) gaussian random field

\[
P_N = \frac{\exp \left[-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} f_i (M^{-1})_{ij} f_j \right]}{\left[(2\pi)^N (\text{det } M) \right]^{1/2}} \prod_{k=1}^{N} df_k
\]
Correlation functions: Structural Insensitivity

2-pt correlation function is highly insensitive to the geometry & morphology of weblike patterns:

compare 2 distributions with same $\xi(r)$, cq. $P(k)$, but totally different phase distribution

$$\xi(r') = \left(\frac{r}{r_0} \right)^{-\gamma}$$

$\gamma \approx 1.8$

$r_0 \approx 5h^{-1}\text{Mpc}$
Topology, Manifolds & topological holes
Why Topology?

- Cosmic web: a complex pattern of connected structures
- Topology studies connectivity
- Intrinsic topology insensitive to trivial change in the shape of structure (stretching, compression) or trivial coordinate transformation (expansion/contraction, distortion, rotation)
- In the cosmic context: topology insensitive to gravitational amplification and redshift distortion
Manifolds

» Euclidean space \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)
» Locally Euclidean \(M^1, M^2, M^3 \)
Functions on Manifolds

- Height of depth of the surface of earth with respect to sea level
- Primordial fluctuation field, CMB
- Grid-densities of N-body simulations
Topological holes

- Topology in terms of k-dimensional holes
- Betti numbers $\beta_k(k=0,\ldots,d)$: count the no. of k-dimensional holes

0 dimensional holes: connected objects
1 dimensional holes: loops/tunnels
2 dimensional holes: voids
Are all holes important?

- Need to distinguish structures at different scales (cosmic web is multi-scale)

- Some holes are *noise*: discrete sampling, instrumental errors etc

- A need to assign a relative weight
Persistence:
Multi-scale topology
Critical points: Change in topology

• Topological Structure of continuous field determined by singularities:
 - maxima
 - minima
 - saddle points

• Topology changes only while crossing a critical point
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): \textit{birth} and \textit{death} process.
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Persistence:
Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Filtration: Study the change in topology as we sweep from highest to lowest function values.

Topology changes only at critical points (maxima, minima, saddle points): birth and death process.

Persistence: Multi-scale topology.
Filtration: Study the change in topology as we sweep from highest to lowest function values.

Topology changes only at critical points (maxima, minima, saddle points): birth and death process.

Persistence: Multi-scale topology
Persistence:
Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process
Persistence:
Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Filtration: Study the change in topology as we sweep from highest to lowest function values.

Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Persistence: Multi-scale topology

- Filtration: Study the change in topology as we sweep from highest to lowest function values.

- Topology changes only at critical points (maxima, minima, saddle points): birth and death process.
Persistence Diagrams

- Representation of multi-scale topology
- Dots in the diagram record birth and death
- A diagram for each ambient dimension of the manifold

- 0-dimensional diagram: representation of merger of isolated objects (merger trees?)
- 1-dimensional diagrams: formation and filling up of loops
- 2-dimensional diagrams: formation and destruction of topological voids
Persistence Diagrams: our preferred representation

- Rotation of co-ordinates

\[D + B = \text{Mean density} \]

\[D - B = \text{persistence} \]
A typical persistence diagram

Gaussian random field, power-law power spectrum, n=0 (all dimensions)
Statistics of persistence topology

• Topology connected to distribution of critical points

• Critical point distribution well defined for stochastic processes (GRF, CMB, LSS): probabilistic description

• Are the diagrams well defined and stable/convergent over many realization?

• Statistical description?
Discretize the diagram into regular grids

Empirical intensity function:

\[\langle I_{ij} \rangle = \frac{\langle N_{ij} \rangle}{\langle N_{tot} \rangle} \]

• Are the diagrams well defined and stable/convergent over many realization?

• Statistical description?
Persistence intensity maps: empirical probability description

Discretize the diagram into regular grids

Empirical intensity function:

\[
\langle I_{ij} \rangle = \frac{\langle N_{ij} \rangle}{\langle N_{tot} \rangle}
\]

Are the diagrams well defined and stable/convergent over many realization?

Statistical description?
Gaussian random field : Models

- LCDM, n=1
- Power-law, n=1
- Power-law, n=0
- Power-law, n=-1
- Power-law, n=-2
- Power-law, n=-3

Pranav et. al 2013
Gaussian random field: Persistence intensity maps

Pranav et. al 2013
Model comparison : Ratio intensity maps

- Local difference in topology

- Excess/deficit of topological objects in the neighborhood of the point defined by (mean density:pers)

Ratio function:

\[
\Delta_{ij}(f_1, f_2) = \frac{\left(\frac{\langle N_{ij} \rangle_{f_1}}{\langle N_{tot} \rangle_{f_1}}\right)}{\left(\frac{\langle N_{ij} \rangle_{f_2}}{\langle N_{tot} \rangle_{f_2}}\right)} \]

\[
= \left(\frac{\langle N_{ij} \rangle_{f_1}}{\langle N_{ij} \rangle_{f_2}}\right) \ast \frac{1}{\Omega_{(f_1, f_2)}}
\]

Pranav et. al 2013
• Novel and extremely detailed discrimination of topological differences between models

Pranav et. al 2013
Non-gaussianity: The untamable beast
Non-gaussianity: The untamable beast

- Constraining inflationary models
- Described as higher order terms in the expansion around a gaussian (f_{NL}, g_{NL})
- Any function is potentially non-gaussian in nature!
- Cosmological principle: isotropy and homogeneity as constraints imply gaussian fields described strictly only by 2-point correlation function (a good constraint on separating gaussian from non-gaussian)
Ratio intensity maps: non-gaussian case

Pranav et. al 2013
Model comparison: Intensity ratio maps

- Local difference in topology
- Excess/deficit of topological objects in the local neighborhood of the point defined by (mean density: pers)

Ratio function:

\[
\Delta_i(j_{(f1,f2)}) = \frac{\langle N_{ij} \rangle_{f1}}{\langle N_{tot} \rangle_{f1}} / \frac{\langle N_{ij} \rangle_{f2}}{\langle N_{tot} \rangle_{f2}}
\]

Gaussian Random field, wrt n=0

Non-gaussian field, wrt n=0

Non-gaussian simulations, courtesy Licia Verde

Pranav et al. 2013b
Voronoi Kinematic Models:
Heuristic description of structural evolution in the Cosmos

- Persistence diagrams segregate structures remarkably well

Pranav et. al 2013a
Parameters of the model:
- Number of levels (n)
- Number of children (η)
- Ratio between the radius of parent and children spheres (λ)

Randomly place η spheres inside the top-level and continue for all levels
Betti Numbers

- Topology of excursion sets in terms of k-dimensional holes
 \[\beta_k = \# \text{k-dimensional holes} \]
 \[\beta_0 = \text{connected components} \]
 \[\beta_1 = \text{independent loops} \]
 \[\beta_2 = \text{independent voids} \]

\[\beta_0 = 1, \beta_1 = 2, \beta_2 = 1 \]
Betti numbers:
Euler Characteristic and genus extended

- Euler characteristic is a compression of topological information
 \[\chi = \sum_i (-1)^i \beta_i = \sum_i (-1)^i c_i \]
 \[\chi = \beta_0 - \beta_1 + \beta_2 - \cdots (-1)^d \beta_d \]

- Genus defined only for 2D surfaces (number of independent ways of cutting a 2D surface without leaving it disconnected): no satisfactory generalization in lower and higher dimensions(!)
Gaussian random fields: Betti numbers and genus

\[g = -\frac{1}{8\pi^2} \left(\frac{\langle k^2 \rangle}{3} \right)^{3/2} (1 - \nu^2) e^{-\nu^2/2} \]
Morse geometry & Filament detection
Morse Functions and critical points

- Domain: R, R^2, R^3
- Gradient: ∇f
- Critical points: $\nabla f = 0$
- Smooth functions: $\nabla^2 f$

(a) Minimum, 0, •
(b) Saddle, 1, ⊕
(d) Monkey Saddle, ★
(c) Maximum, 2, ○
Morse geometry:
Critical points, gradient lines & descending/ascending manifolds

Gradient lines
Morse geometry:
Filaments as ascending manifolds of 2-saddles
Morse geometry:
Filaments as ascending manifolds of 2-saddles

Shivshankar, Pranav et. al
2013
Spin alignment of DM haloes along filaments

Pranav et. al 2013c
Interactive filament detection:
New software
Universe in the Brain?

I think therefore I am - Descartes
Universe in the Brain?

I think therefore I am, therefore the Universe is - Pratyush
Conclusions

• Topology ideal tool for studying complex spatial patterns manifested in the universe

• Persistence topology: powerful tool for hierarchical topological description of LSS and CMB

• (Persistence) Homology offers new insights into structure, complexity and connectivity of the Cosmic Web

• Persistence provides rich language for description of multi-scale (hierarchical) topology of cosmic structure

• Persistence & ratio intensity maps: unprecedented detailed topological description (model discrimination)

• Ratio maps highly sensitive to deviations from gaussianity: Powerful probes for non-gaussianity

• Geometric connections: pattern/shape identification and description (cosmic filaments)
Holes and Homology

- Homology: algebraic formalization of topological holes in terms of chain, cycle and boundary groups

- p^{th} homology group H_p: collection of independent p-dimensional cycles

- Homology groups: analogous to vector spaces

- β_p: p-dimensional Betti number (rank of the p^{th} homology group H_p)
Morse Functions and critical points

- Topology changes only when crossing critical points

» Domain \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)

» Gradient \(\nabla f \)

» Critical points \(\nabla f = 0 \)

» Smooth functions \(\nabla^2 f \)
Morse Functions and critical points

- Topology changes only when crossing critical points

» Domain $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$

» Gradient ∇f

» Critical points $\nabla f = 0$

» Smooth functions $\nabla^2 f$
Morse Functions and critical points

- Topology changes only when crossing critical points!

» Domain $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$

» Gradient ∇f

» Critical points $\nabla f = 0$

» Smooth functions $\nabla^2 f$
Morse Functions and critical points

- Topology changes only when crossing critical points

- Domain: $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$
- Gradient: ∇f
- Critical points: $\nabla f = 0$
- Smooth functions: $\nabla^2 f$
Morse Functions and critical points

- Topology changes only when crossing critical points

» Domain \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)
- Gradient \(\nabla f \)
- Critical points \(\nabla f = 0 \)
- Smooth functions \(\nabla^2 f \)
Morse Functions and critical points

- Topology changes only when crossing critical points

» Domain $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$

» Gradient ∇f

» Critical points $\nabla f = 0$

» Smooth functions $\nabla^2 f$
Morse Functions and critical points

- Topology changes only when crossing critical points

» Domain \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)

» Gradient \(\nabla f \)

» Critical points \(\nabla f = 0 \)

» Smooth functions \(\nabla^2 f \)