Welcome to

MATH:7450 (22M:305) Topics in Topology: Scientific
and Engineering Applications of Algebraic Topology

Week 1: Introduction to Topological Data Analysis
via Mapper Software

Sept: Persistent Homology plus topics from student
and speaker input.
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Are you interested in analyzing data?
Do you have data to analyze?

Would you like collaborators?

If so, let me know by mid-September.

Do you have any recommendations
regarding online (or offline) material?



From Preparatory Lecture 6
Creating a simplicial complex from data



From Preparatory Lecture 6
Creating a simplicial complex from data




Extracting insights from the shape of
complex data using topology

P.Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M.
Alagappan, J. Carlsson & G. Carlsson
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A Original Point Cloud

A) Data Set
Example: Point cloud data
representing a hand.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



A Original Point Cloud Data Set:

Example: Point cloud data
representing a hand.

B Coloring by filter value
Function f: Data Set 2 R

Example: x-coordinate
f:(x,y,z) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
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Function f: Data Set 2 R

Ex 1: x-coordinate
f:(x,y,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
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Function f: Data Set 2 R

Ex 1: x-coordinate
f:(x,y,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value

Function f: Data Set 2 R

Ex 1: x-coordinate
f:(x,y,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Put data into
overlapping bins.
Example: fi(a, b))

Function f: Data Set 2 R

Ex 1: x-coordinate
f:(x,y,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



A Original Point Cloud
Data Set

Example: Point cloud data
representing a hand.

B Coloring by filter value
Function f: Data Set 2 R

Example: x-coordinate
f:(x,y,2) 2 x

Example: fi(a, b))

g Put data into overlapping bins.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



C Binning by filter value

Q
& W
- =&
¢« @

D) Cluster each bin

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



C Binning by filter value
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D) Cluster each bin

& create network.
Vertex = a cluster of a bin.
Edge = nonempty intersection
between clusters

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



A Original Point Cloud A) Da ta Se t
Example: Point cloud data
representing a hand.

B Coloring by filter value

B) Function f: Data Set > R

Example: x-coordinate
f:(x,y,2) 2 x
C) Put data into overlapping bins.

Example: fi(a, b))

D Clustering and network construction

D) Cluster each bin & create network.

E Vertex = a cluster of a bin.

o——D0—0 90 Edge = nonempty intersection

between clusters
http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html




Note: we
made many,
many choices

It helps to know what you are doing when
you make choices, so collaborating with
others is highly recommended.



A Original Point Cloud

We chose
how to
model the
data set

A) Data Set

Example: Point cloud data

representing a hand.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
Function f: Data Set 2 R

Chose N
Flter Ex 1: x-coordinate
function f:lxy,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
Function f: Data Set 2 R

Chose N
Flter Ex 1: x-coordinate
function filxy,2) 2 x

Ex 2: y-coordinate
g:(x,y,2)2y

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
Function f: Data Set 2 R

Chose

. Ex 1: x-coordinate
filter

function frlxy, 2) 2 x

Possible filter functions:

Principle component analysis

L-infinity centrality:
f(x) = max{d(x, p) : p in data set}
Norm: f(x)=||x || =length of x
http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



C Binning by filter value
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Put data into overlapping bins.
Example: fi(a, b))

If equal length intervals:

Choose length.

Choose % overlap.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



D Clustering and network construction

Chose how

to cluster. ._x

Normally :—Z/:—i)/.

need a

definition of

distance

between Cluster each bin & create network.
data points Vertex = a cluster of a bin.

Edge = nonempty intersection

< :‘ E g between clusters
L=
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http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Note: we
made many,
many choices

It helps to know what you are doing when
you make choices, so collaborating with
others is highly recommended.



Note: we made many, many choices

“It is useful to think of it as a camera, with lens
adjustments and other settings. A different filter
function may generate a network with a different
shape, thus allowing one to explore the data from
a different mathematical perspective.”

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Note: we made many, many choices

“It is useful to think of it as a camera, with lens
adjustments and other settings. A different filter
function may generate a network with a different
shape, thus allowing one to explore the data from
a different mathematical perspective.”

False positives???

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Note: we made many, many choices

“It is useful to think of it as a camera, with lens
adjustments and other settings. A different filter
function may generate a network with a different
shape, thus allowing one to explore the data from
a different mathematical perspective.”

False positives vs Persistence

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value
Function f: Data Set 2 R

Chose N
Flter Ex 1: x-coordinate
function f:lxy,2) 2 x

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



B Coloring by filter value

nction f: Data Set 2 R

Chose N

Flter Ex 1: x-coordinate

function f:lxy,2) 2 x
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http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Chose
filter

Only need to cover the data points.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Chose
filter

Only need to cover the data points.
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Chose
filter

Only need to cover the data points.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Chose filter

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Chose filter
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http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Topological Data Analysis (TDA): Three key ideas of
topology that make extracting of patterns via shape
possible.

1.) coordinate free.

* No dependence on the coordinate system chosen.
* Can compare data derived from different platforms
 vital when one is studying data collected with

different technologies, or from different labs when
the methodologies cannot be standardized.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



Topological Data Analysis (TDA): Three key ideas

of topology that make extracting of patterns via
shape possible.

2.) invariant under “small” deformations.

* |less sensitive to noise
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. . Topological Methods for the Analysis
Figure from http://comptop.stanford.edu/u/preprints/mapperPBG.pdf  of High bimensional

Data Sets and 3D Object Recognition,

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html Singh, Mémoli, Carlsson



Topological Data Analysis
(TDA): Three key ideas of
topology that make extracting
of patterns via shape possible.

3.) compressed
representations of shapes.

* Input: dataset with
thousands of points

* Output: network with
13 vertices and 12 edges.

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html

A Original Point Cloud
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B Coloring by filter value

C Binning by filter value

FEY

D Clustering and network construction




