Lecture 5: Triangulations & simplicial complexes (and cell complexes).

in a series of preparatory lectures for the Fall 2013 online course MATH: 7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology

Target Audience: Anyone interested in **topological data analysis** including graduate students, faculty, industrial researchers in bioinformatics, biology, business, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc.

Isabel K. Darcy

Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa

http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

0-simplex = vertex = \vee

1-simplex = edge = $\{v_1, v_2\}$

Note that the boundary of this edge is $v_2 + v_1$

2-simplex = triangle = $\{v_1, v_2, v_3\}$

Note that the boundary of this triangle is the cycle

$$e_1 + e_2 + e_3$$

= $\{v_1, v_2\} + \{v_2, v_3\} + \{v_1, v_3\}$

3-simplex = $\{v_1, v_2, v_3, v_4\}$ = tetrahedron

boundary of $\{v_1, v_2, v_3, v_4\} = \{v_1, v_2, v_3\} + \{v_1, v_2, v_4\} + \{v_1, v_2, v_4\} + \{v_1, v_2, v_4\} + \{v_2, v_3, v_4\}$

n-simplex = $\{v_1, v_2, ..., v_{n+1}\}$

3-simplex = $\{v_1, v_2, v_3, v_4\}$ = tetrahedron

boundary of $\{v_1, v_2, v_3, v_4\} = \{v_1, v_2, v_3\} + \{v_1, v_2, v_4\} + \{v_1, v_3, v_4\} + \{v_2, v_3, v_4\}$

n-simplex = $\{v_1, v_2, ..., v_{n+1}\}$

O.) Start by adding 0-dimensional vertices (0-simplices)

1.) Next add 1-dimensional edges (1-simplices).

Note: These edges must connect two vertices.

I.e., the boundary of an edge is two vertices

1.) Next add 1-dimensional edges (1-simplices).

Note: These edges must connect two vertices.

I.e., the boundary of an edge is two vertices

1.) Next add 1-dimensional edges (1-simplices).

Note: These edges must connect two vertices.

I.e., the boundary of an edge is two vertices

2.) Add 2-dimensional triangles (2-simplices).

Boundary of a triangle = a cycle consisting of 3 edges.

2.) Add 2-dimensional triangles (2-simplices).

Boundary of a triangle = a cycle consisting of 3 edges.

3.) Add 3-dimensional tetrahedrons (3-simplices).

Boundary of a 3-simplex

= a cycle consisting of its four 2-dimensional faces.

3.) Add 3-dimensional tetrahedrons (3-simplices).

Boundary of a 3-simplex

= a cycle consisting of its four 2-dimensional faces.

4.) Add 4-dimensional 4-simplices, $\{v_1, v_2, ..., v_5\}$. Boundary of a 4-simplex

= a cycle consisting of 3-simplices.

=
$$\{v_2, v_3, v_4, v_5\} + \{v_1, v_3, v_4, v_5\} + \{v_1, v_2, v_4, v_5\}$$

+ $\{v_1, v_2, v_3, v_5\} + \{v_1, v_2, v_3, v_4\}$

n.) Add n-dimensional n-simplices, $\{v_1, v_2, ..., v_{n+1}\}$.

Boundary of a n-simplex

= a cycle consisting of (n-1)-simplices.

circle =
$$\{ x \text{ in } R^2 : ||x|| = 1 \}$$

circle =
$$\{ x \text{ in } R^2 : ||x|| = 1 \}$$

circle =
$$\{ x \text{ in } R^2 : ||x|| = 1 \}$$

circle =
$$\{ x \text{ in } R^2 : ||x|| = 1 \}$$

circle =
$$\{ x \text{ in } R^2 : ||x|| = 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

disk =
$$\{ x \text{ in } R^2 : ||x|| \le 1 \}$$

Fist image from http://openclipart.org/detail/1000/a-raised-fist-by-liftarn

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

sphere =
$$\{ x \text{ in } R^3 : ||x|| = 1 \}$$

Creating a cell complex

Building block:
$$n$$
-cells = $\{x \text{ in } R^n : ||x|| \le 1 \}$

Examples:
$$0$$
-cell = { x in R^0 : $||x|| < 1$ }

1-cell = open interval =
$$\{x \text{ in } R : ||x|| < 1\}$$

2-cell = open disk =
$$\{ x \text{ in } R^2 : ||x|| < 1 \}$$

3-cell = open ball =
$$\{x \text{ in } R^3 : ||x|| < 1\}$$

0-simplex = vertex = \vee

1-simplex = edge = $\{v_1, v_2\}$

Note that the boundary of this edge is $v_2 + v_1$

2-simplex = triangle = $\{v_1, v_2, v_3\}$

Note that the boundary of this triangle is the cycle

$$e_1 + e_2 + e_3$$

= $\{v_1, v_2\} + \{v_2, v_3\} + \{v_1, v_3\}$

3-simplex = $\{v_1, v_2, v_3, v_4\}$ = tetrahedron

boundary of $\{v_1, v_2, v_3, v_4\} = \{v_1, v_2, v_3\} + \{v_1, v_2, v_4\} + \{v_1, v_3, v_4\} + \{v_2, v_3, v_4\}$

n-simplex = $\{v_1, v_2, ..., v_{n+1}\}$

Creating a cell complex

Building block: n-cells =
$$\{x \text{ in } R^n : ||x|| \le 1 \}$$

Examples:
$$0$$
-cell = { x in R^0 : $||x|| < 1$ }

1-cell = open interval =
$$\{x \text{ in } R : ||x|| < 1\}$$

2-cell = open disk =
$$\{ x \text{ in } R^2 : ||x|| < 1 \}$$

3-cell = open ball =
$$\{x \text{ in } R^3 : ||x|| < 1\}$$

Creating a cell complex

Building block:
$$n$$
-cells = $\{x \text{ in } R^n : ||x|| \le 1 \}$

Examples:
$$0$$
-cell = { x in R^0 : $||x|| < 1$ }

1-cell = open interval =
$$\{x \text{ in } R : ||x|| < 1\}$$

2-cell = open disk =
$$\{ x \text{ in } R^2 : ||x|| < 1 \}$$

Simplicial complex

Cell complex

Simplicial complex

Cell complex

Euler characteristic (simple form):

X = number of vertices – number of edges + number of faces

Or in short-hand,

$$x = |V| - |E| + |F|$$

where V = set of vertices

E = set of edges

F = set of 2-dimensional faces

& the notation |X| = the number of elements in the set X.

Simplicial complex 3 vertices, 3 edges, 1 triangle

Euler characteristic:

Given a simplicial complex C,

let C_n = the set of n-dimensional simplices in C_n , and let $|C_n|$ denote the number of elements in C_n . Then

$$X = |C_0| - |C_1| + |C_2| - |C_3| + ...$$

$$= \Sigma (-1)^n |C_n|$$

Euler characteristic:

Given a cell complex C,

let C_n = the set of n-dimensional cells in \mathcal{C} , and

let $|C_n|$ denote the number of elements in C_n . Then

$$X = |C_0| - |C_1| + |C_2| - |C_3| + ...$$

$$= \sum_{n=1}^{\infty} (-1)^n |C_n|$$

Simplicial complex 4 vertices, 6 edges, 4 triangles

=

Simplicial complex

Cell complex

= • L

Simplicial complex

=

Cell complex

= • (

• → • U

Simplicial complex

=

Cell complex

= • (

$$\bullet \rightarrow \bullet \cup$$

=

Simplicial complex

=

Cell complex

= • L

•

=

Fist image from http://openclipart.org/detail/1000/a-raised-fist-by-liftarn

Cell complex
$$= \cdot \cdot \cdot$$
 $= \cdot \cup$ $= \cdot \cup$

Simplicial complex Cell complex

Cell complex

= • L

 $\bullet \rightarrow \bullet$

=

