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A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ...+ N X,
where n. are integers.

Z = The set of integers={...,,-2,-1,0, 1, 2, ...}
= the set of all whole numbers (positive, negative, 0)

Addition:

(NXg + NoXy + .+ NpX ) + (MoXg + mox, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m,)x,



A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NX; + N,X, + ... + N X,
where n. are integers.

Example: Z[§, 3§

488+ 208
B-28
3%
k& + n§
Z = The set of integers={...,,-2,-1,0, 1, 2, ...}



A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ...+ N X,
where n. are integers.

Z = The set of integers={...,,-2,-1,0, 1, 2, ...}
= the set of all whole numbers (positive, negative, 0)

Addition:

(NXg + NoXy + .+ NpX ) + (MoXg + mox, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m,)x,



A free vector space over the field F generated by the

elements x,, x,, ..., X, consists of all elements of the

form
| NyX; + N,X, + ...+ NpX,
where n, in F.

Examples of a field: R =set of real numbers

Q = set of rational numbers
ZZ = {01 1}
Addition:

(N X+ N,X, + o+ nx ) + (Mox; + mox, + ...+ myx,)

= (N + my)x; + (N, + m,)x, + ...+ (n + m.)x,



A free vector space over the field F generated by the

elements x;, X,, ..., X, consists of all elements of the
form

where n.in F.
Examples of a field:

R = set of real numbers:
nx+V2y+3z isin R[x,Y, Z]

Q = set of rational numbers (i.e. fractions):
(2)x + 4y isin Q[X, V]

Z,={0,1}: Ox+1ly+1w+0z isin Z,[x,vy, z, w]



Closure
Associative
ldentity
Inverses

X,yin Gimpliesx+yisin G
(X+y)+z=x+(y+2)
O+x=x=x+0

X+ (-x) =0 = (-x) + X

Examples of a group under addition:
R = set of real numbers

Q = set of rational numbers.
Z = set of integers.
Zz = {Or 1}



Closure
Associative
ldentity
Inverses

X,y in Gimpliesx+yisin G
(X+y)+z=x+(y +2)
O+x=x=x+0

X+ (-x) =0=(-x) + x

AbelianGrowp |

Closure
Associative
ldentity
Inverses

Commutative

X,y in Gimpliesx+yisin G
(X+y)+z=x+(y+2)
O+x=x=x+0

X+ (-x) =0=(-x) + x

X+y=y+X



AbelianGrowp |

Closure X, yin Gimpliesx+yisin G
Associative (X+y)+z=x+(y +2)
ldentity O+x=x=x+0

Inverses X+ (-x) =0=(-x) + x
Commutative X+y=y+X

Examples of an abelian group under addition:
R = set of real numbers
Q = set of rational numbers.
Z = set of integers.
Z,=10, 1}



Closure X,y in GimpliesxyisinG
Associative (xy)z=x(y z)

ldentity 1x=x=1x

Inverses X (x1)=1=(x1)x

Examples of a group under multiplication:
R — {0} = set of real numbers not including zero.

Q — {0} = set of rational numbers not including zero.

£y~ {0}={1}



Closure X,y in GimpliesxyisinG
Associative (xy)z=x(y z)

ldentity 1x=x=1x

Inverses X (x1)=1=(x1)x

Note that Z — {0} is not a group under multiplication.



Fis a field if
(1) Fis an abelian group under addition

(2) F—{0}is an abelian group under multiplication
(3) multiplication distributes across addition.

Field Addition Multiplication
Closure X,yinG=>x+vyinG closure
Associative (X+y)+z=x+(y+2) (xy)z=x(y z)
Identity O+x=x=x+0 1x=x=1x
Inverses X+ (-x) =0=(-x) + X X (x1)=1=(x1)x
Commutative| Xx+y=y +X (xy)z=x(y z)
Distributive X(y+z) = Xy+xz

Examples of a field: R = set of real numbers
Q = set of rational numbers

Z,=1{0,1}



A free vector space over the field F generated by the

elements x,, x,, ..., X, consists of all elements of the

form
| NyX; + N,X, + ...+ NpX,
where n, in F.

Examples of a field: R =set of real numbers

Q = set of rational numbers
={0, 1}
Addition:

(N X+ N,X, + o+ nx ) + (Mox; + mox, + ...+ myx,)

= (N + my)x; + (N, + m,)x, + ...+ (n + m.)x,



A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ...+ N X,
where n. are integers.

Z = The set of integers={...,,-2,-1,0, 1, 2, ...}
= the set of all whole numbers (positive, negative, 0)

Addition:

(NXg + NoXy + .+ NpX ) + (MoXg + mox, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m,)x,



A free vector space over the field Z, generated by the
elements xy, X,, ..., X, consists of all elements of the

form
N X, + N,X, + ...+ NpX,

where n. in Z,.

Example:  Z,[x;, x,] = {0, x5, X, X;+X,}

4x, + 2x, = 0x; + 0x, =0 mod 2
1x, + Ox,=x, mod 2
Ox, + 1x,=x, mod 2
kx, + nx, mod 2

Z, = The set of integers mod 2 = {0, 1}



Addition:

(NXy + NoXy + .+ NpX ) + (MoX, + Mo, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m)x,

Example: Z,[x;, x,] = {0, X;, X, X;+X,}
1x, + 1x, =2x, = 0 mod 2
(X, +X,) + (X, + 0x,) = 2%, + X, = X, mod 2

(1x, + Ox,) + (Ox, + 1x,) = X; +X, mod 2



Example 2 from lecture 3:

4 vertices + 5 edges
4v + 5e

VvV = vertex e = edge
. M



Example 2 from lecture 3:

O vertices + 1 edges mod 2
Ov+le=e mod?2

VvV = vertex e = edge
‘ H



Example 2 from lecture 3:

O vertices + 1 edges mod 2
Ov+le=e mod?2

VvV = vertex e = edge
‘ M



in Z,[vy, v, , V3, vy €4, €, , €5 €, €]



Vi+V,+Vy+v, in Z[v,, v, , V3, V]

e, te,te;te, +e; in Ze, e, , e, €4 €]



Note that e, + e, + e; is a cycle.

Note that e; + e. + e, is a cycle.




In Z[e,, e,, e;, e, e]

Objects: oriented edges Q—eH

Butin Z,, 1=-1. Thus e =




In Z[e,, e,, e;, e, e]

Objects: oriented edges Q—eH




In Z[e,, e,, e;, e, e]

Objects: oriented edges Q—eH




In Z[e, e,, e;, e, e]

Objects: oriented edges Q—eH

o—>) -0 *—4¢——0

e, — e

In Z,[e,, e,, e;, e, ]

Objects: edges @@



In Z[e,, e,, e;, e, e

(e, +e,+e;)+(—e;+e.+e,) =e,+e, +te.+e
1 2 3 3 5 4 1 2 5 4



In Z,[e,, e,, e;, €, e]

(e, +e,+e;)+(e;te.+e,) =e,+e, +2e;+ec.t+ e,

=e,+e, +tec+e



e,te,+e;+e,+e,+ ecte, =2e,+2e,+te;+e,+ e
=e;+te,te

e,+te,te.+te,+e+ e,+e;, e+t e



In Z[e,, e,, e;, e, e

The boundary of e, = v, — v,




In Z,[e,, e,, e;, €, e]

The boundary of e; = v, + v,




In Z,[e,, e,, e;, €, e]

The boundary of e; = v, + v,
The boundary of e, = v; + v,

The boundary of e; = v, + v,

The boundary of e; +e, + e,

= V,+ V;+ Va+ V,+ v+ vy = 2v 4+ 2v,+ 2v,= 0



In Z[f]

Add an oriented face




d an oriented face

But with Z,

coefficients +1 = -1
sof =




N Z,[f]

Add a face




Building blocks for a simplicial complex using
Z, coefficients

O-simplex = vertex=v @
1-simplex = edge = {v,, v,}

Note that the boundary
of this edge isv, + v,

VIH V2
S

2-simplex = face = {v,, v,, v;}

Note that the boundary
of this face is the cycle

e, +e,+ e,

={vy, Vo) +1{v,, vo} +{v,, v;}




Building blocks for a simplicial complex using
Z, coefficients
3-simplex = {v,, v,, v5, v, } = tetrahedron
V)

V, Vs

boundary of {v,, v,, v;, v} =
{Vll V2) V3} + {V]_/ V2; V4} + {V]_/ V3; V4} + {VZI V3) V4}

n-simplex ={v,, v, ..., V,,1}
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