Lecture 4: Addition (and free vector spaces)

of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology

Target Audience: Anyone interested in **topological data analysis** including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc.

Isabel K. Darcy

Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa

http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Z = The set of integers =
$$\{ ..., -2, -1, 0, 1, 2, ... \}$$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

A free vector space over the field \mathbf{F} generated by the elements $x_1, x_2, ..., x_k$ consists of all elements of the form

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i in **F**.

Examples of a field:
$$\mathbf{R} = \operatorname{set}$$
 of real numbers $\mathbf{Q} = \operatorname{set}$ of rational numbers $\mathbf{Z_2} = \{0, 1\}$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

A free vector space over the field \mathbf{F} generated by the elements $x_1, x_2, ..., x_k$ consists of all elements of the form

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i in **F**.

Examples of a field:

R = set of real numbers:

$$\pi x + \sqrt{2} y + 3z \text{ is in } \mathbf{R}[x, y, z]$$

Q = set of rational numbers (i.e. fractions):
$$(\frac{1}{2})x + 4y$$
 is in **Q**[x, y]

$$Z_2 = \{0, 1\}: 0x + 1y + 1w + 0z \text{ is in } Z_2[x, y, z, w]$$

Group	
Closure	x, y in G implies x + y is in G
Associative	(x + y) + z = x + (y + z)
Identity	0 + x = x = x + 0
Inverses	x + (-x) = 0 = (-x) + x

Examples of a group under addition:

R = set of real numbers

Q = set of rational numbers.

Z = set of integers.

$$Z_2 = \{0, 1\}$$

Group	
Closure	x, y in G implies x + y is in G
Associative	(x + y) + z = x + (y + z)
Identity	0 + x = x = x + 0
Inverses	x + (-x) = 0 = (-x) + x

Abelian Group	
Closure	x, y in G implies x + y is in G
Associative	(x + y) + z = x + (y + z)
Identity	0 + x = x = x + 0
Inverses	x + (-x) = 0 = (-x) + x
Commutative	x + y = y + x

Abelian Group	
Closure	x, y in G implies x + y is in G
Associative	(x + y) + z = x + (y + z)
Identity	0 + x = x = x + 0
Inverses	x + (-x) = 0 = (-x) + x
Commutative	x + y = y + x

Examples of an abelian group under addition:

R = set of real numbers

Q = set of rational numbers.

Z = set of integers.

$$Z_2 = \{0, 1\}$$

Group	
Closure	x, y in G implies x y is in G
Associative	(x y) z = x (y z)
Identity	1 x = x = 1x
Inverses	$x(x^{-1}) = 1 = (x^{-1}) x$

Examples of a group under multiplication:

 $\mathbf{R} - \{0\}$ = set of real numbers not including zero.

 $\mathbf{Q} - \{0\}$ = set of rational numbers not including zero.

$$\mathbf{Z}_{2}$$
- $\{0\}$ = $\{1\}$

Group	
Closure	x, y in G implies x y is in G
Associative	(x y) z = x (y z)
Identity	1 x = x = 1x
Inverses	$x(x^{-1}) = 1 = (x^{-1}) x$

Note that $\mathbf{Z} - \{0\}$ is not a group under multiplication.

F is a *field* if

- (1) F is an abelian group under addition
- (2) $\mathbf{F} \{0\}$ is an abelian group under multiplication
- (3) multiplication distributes across addition.

Field	Addition	Multiplication
Closure	x , y in $G \rightarrow x+y$ in G	closure
Associative	(x + y) + z = x + (y + z)	(x y) z = x (y z)
Identity	0 + x = x = x + 0	1 x = x = 1x
Inverses	x + (-x) = 0 = (-x) + x	$x(x^{-1}) = 1 = (x^{-1}) x$
Commutative	x + y = y + x	(x y) z = x (y z)
Distributive	x(y+z) = xy+xz	

Examples of a field: \mathbf{R} = set of real numbers

Q = set of rational numbers

$$Z_2 = \{0, 1\}$$

A free vector space over the field \mathbf{F} generated by the elements $x_1, x_2, ..., x_k$ consists of all elements of the form

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i in **F**.

Examples of a field: $\mathbf{R} = \operatorname{set}$ of real numbers $\mathbf{Q} = \operatorname{set}$ of rational numbers $\mathbf{Z}_2 = \{0, 1\}$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

A free vector space over the field \mathbb{Z}_2 generated by the elements $x_1, x_2, ..., x_k$ consists of all elements of the form

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i in \mathbb{Z}_2 .

Example:
$$\mathbf{Z}_{2}[x_{1}, x_{2}] = \{0, x_{1}, x_{2}, x_{1} + x_{2}\}$$

$$4x_{1} + 2x_{2} = 0x_{1} + 0x_{2} = 0 \mod 2$$

$$1x_{1} + 0x_{2} = x_{1} \mod 2$$

$$0x_{1} + 1x_{2} = x_{2} \mod 2$$

$$kx_{1} + nx_{2} \mod 2$$

 \mathbf{Z}_2 = The set of integers mod 2 = $\{0, 1\}$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

Example:
$$\mathbf{Z}_{2}[x_{1}, x_{2}] = \{0, x_{1}, x_{2}, x_{1} + x_{2}\}$$

$$1x_1 + 1x_1 = 2x_1 = 0 \mod 2$$

$$(x_1 + x_2) + (x_1 + 0x_2) = 2x_1 + x_2 = x_2 \mod 2$$

$$(1x_1 + 0x_2) + (0x_1 + 1x_2) = x_1 + x_2 \mod 2$$

Example 2 from lecture 3:

4 vertices + 5 edges 4v + 5e

v = vertex

e = edge

Example 2 from lecture 3:

0 vertices + 1 edges $\mod 2$ 0v + 1e = $e \mod 2$

v = vertex

Example 2 from lecture 3:

$$0 \text{ vertices} + 1 \text{ edges} \mod 2$$

 $0v + 1e = e \mod 2$

v = vertex

$$v_1 + v_2 + v_3 + v_4 + e_1 + e_2 + e_3 + e_4 + e_5$$

in $\mathbf{Z_2}[v_1, v_2, v_3, v_4, e_1, e_2, e_3, e_4, e_5]$

$$v_1 + v_2 + v_3 + v_4$$
 in $Z[v_1, v_2, v_3, v_4]$

$$e_1 + e_2 + e_3 + e_4 + e_5$$
 in $\mathbf{Z}[e_1, e_2, e_3, e_4, e_5]$

Note that $e_1 + e_2 + e_3$ is a cycle.

Note that $e_3 + e_5 + e_4$ is a cycle.

Objects: oriented edges e_i

$$-e$$

But in \mathbb{Z}_2 , 1 = -1. Thus e = -e

Objects: oriented edges e_i

But in \mathbb{Z}_2 , 1 = -1. Thus e = -e

Objects: oriented edges

But in \mathbb{Z}_2 , 1 = -1. Thus e = -e

Objects: oriented edges

In $\mathbf{Z}_{2}[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}]$

Objects: edges

$$(e_1 + e_2 + e_3) + (-e_3 + e_5 + e_4) = e_1 + e_2 + e_5 + e_4$$

$$(e_1 + e_2 + e_3) + (e_3 + e_5 + e_4) = e_1 + e_2 + 2e_3 + e_5 + e_4$$

= $e_1 + e_2 + e_5 + e_4$

$$e_1 + e_2 + e_3 + e_1 + e_2 + e_5 + e_4 = 2e_1 + 2e_2 + e_3 + e_4 + e_5$$

= $e_3 + e_4 + e_5$

$$e_1 + e_2 + e_5 + e_4 + e_1 + e_2 + e_3 = e_3 + e_4 + e_5$$

The boundary of $e_1 = v_2 - v_1$

In $\mathbf{Z}_{2}[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}]$

The boundary of $e_1 = v_2 + v_1$

In $\mathbf{Z}_{2}[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}]$

The boundary of $e_1 = v_2 + v_1$

The boundary of $e_2 = v_3 + v_2$

The boundary of $e_3 = v_1 + v_3$

The boundary of $e_1 + e_2 + e_3$

$$= v_2 + v_1 + v_3 + v_2 + v_1 + v_3 = 2v_1 + 2v_2 + 2v_3 = 0$$

In **Z**[f]

Add an oriented face

nd an oriented face

But with Z_2 coefficients +1 = -1 so f = -f.

In $Z_2[f]$

Add a face

Building blocks for a simplicial complex using **Z**₂ coefficients

1-simplex = edge =
$$\{v_1, v_2\}$$

Note that the boundary of this edge is $v_2 + v_1$

2-simplex = face =
$$\{v_1, v_2, v_3\}$$

Note that the boundary of this face is the cycle

$$e_1 + e_2 + e_3$$

= $\{v_1, v_2\} + \{v_2, v_3\} + \{v_1, v_3\}$

Building blocks for a simplicial complex using **Z**₂ coefficients

3-simplex = $\{v_1, v_2, v_3, v_4\}$ = tetrahedron

boundary of
$$\{v_1, v_2, v_3, v_4\} = \{v_1, v_2, v_3\} + \{v_1, v_2, v_4\} + \{v_1, v_3, v_4\} + \{v_2, v_3, v_4\}$$

n-simplex =
$$\{v_1, v_2, ..., v_{n+1}\}$$