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A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ... + N X,
where n. are integers.

Z = The set of integers={...,,-2,-1,0, 1, 2, ...}
= the set of all whole numbers (positive, negative, 0)

Addition:

(NXg + NoXy + .+ NpX ) + (MoXy + mox, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m,)x,



Formal sum:
4 cone flower + 2 rose

Will add video + 3 cone flower + 1 rose
clips when
video becomes = 7 cone flower + 3 rose

available.
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A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ... + N X,
where n. are integers.

Example: Z[x,, x,]

4x, + 2X,
Xq - 2X,
-3X,
kx, + nx,
Z = The set of integers=1{...,,-2,-1,0, 1, 2, ...}
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Example:




A free abelian group generated by the elements
X4, X5, -, X, CONsists of all elements of the form

NyX; + N,X, + ... + N X,
where n. are integers.

Example: Z[x,, x,]

4x, + 2X,
Xq - 2X,
-3X,
kx, + nx,
Z = The set of integers=1{...,,-2,-1,0, 1, 2, ...}



Addition:

(NXy + NoXy + .+ 0X ) + (MoXy + Mo, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m)x,
Example: Z[x,, x,]

(4x, + 2X,) + (3%, + X,) = 7%, + 3X,

(4x, + 2Xx,) + (X, - 2x,) = 5x,



Addition:

(NXy + NoXy + .+ 0X ) + (MoXy + Mo, + ...+ myx,)

=(n;+ my)x; +(n,+ m,)x, + ...+ (n + m.)x,

Example:

(4x, + 2Xx,) + (X, - 2x,) = 5x,



Addition:

(NXy + NoXy + .+ 0X ) + (MoXy + Mo, + ...+ myx,)

=(n;+ my)x; + (N, + m,)x, + ... + (N + m)x,
Example: Z[x,, x,]

(4x, + 2X,) + (3%, + X,) = 7%, + 3X,

(4x, + 2Xx,) + (X, - 2x,) = 5x,



Example:

4 vertices + 5 edges + 1 faces
4v + 5e +f.

V = vertex e = edge f =face
© o0




Example 2:

4 vertices + 5 edges
4v + 5e

VvV = vertex e = edge
. H



Vi+V,+ Va4V, +e,+e,+e,te, +e



Vi+V,+Vy+v, in Z[v,, v, , V3, V]

e, te,te;te, +e; in Ze, e, , e, €4 €]



Note that e, + e, + e; is a cycle.

Technical note: In graph theory, the cycle also includes vertices. l.e, this cycle in
graph theory is the path v,, e,, v,, e,, v, €5, v, . Since we are interested in simplicial
complexes (see later lecture), we only need the edges, so e, + e, + e, is a cycle.



Note that e, + e, + e; is a cycle.

Note that e; + e, + e. is a cycle.

Technical note: In graph theory, the cycle also includes vertices. l.e, the cycle in
graph theory is the path v,, e,, v,, e,, v, €5, v, . Since we are interested in simplicial
complexes (see later lecture), we only need the edges, so e, + e, + e, is a cycle.



Note that e, + e, + e, is a cycle.

Note that —e; +e. + e, is a cycle.




Note that e, + e, + e, is a cycle.

Note that —e; + e, + e: is a cycle.

Vy

Objects: oriented edges ‘—eH



Note that e, + e, + e, is a cycle.

Note that —e; +e. + e, is a cycle.

Vy

Objects: oriented edges ‘—eH
inZ[e,, e, e, e, e |



Note that e, + e, + e, is a cycle.

Note that —e; +e. + e, is a cycle.

Vy

Objects: oriented edges ‘—eH
inZ[e,, e, e, e, e |

- @



(e, +e,+e;)+(—es+e.+e,) =e,+e, +te.+e
1 2 3 3 5 4 1 2 5 4



e, te,+e;+e,+e,+ ecte, =2e,+2e,+te;+e,+e;

e;te,+e.+te,+e,+ e,+te; =2e,+2e,+e;+e t+ e



The boundary of e; = v, — v,




The boundary of e; = v, — v,
v, The boundaryof e, = v;— v,

The boundary of e; = v, — v,

The boundary of e; +e, + e,

=V,— V;+ V=V, + v,—Vv; =0



Add a face




Add an oriented face




Add an oriented face




Add an oriented face

Note that the boundary
of this face is the cycle
e,+te,+ e,




Simplicial complex




O-simplex =vertex=v @

1-simplex = oriented edge = (v;, v,)

Note that the boundary
Vi ‘—eHVk of this edge is v, — v,

2-simplex = oriented face = (v, Vi, V,)

Note that the boundary
of this face is the cycle
e,+e,+ e,




3-simplex = (v,, v,, V3, V,) = tetrahedron
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