Lecture 2: Addition (and free abelian groups)

of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology

Target Audience: Anyone interested in **topological data analysis** including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc.

Isabel K. Darcy

Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa

http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

Will add video clips when video becomes available.

Formal sum:

4 cone flower + 2 rose

+ 3 cone flower + 1 rose

= 7 cone flower + 3 rose

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

=
$$(n_1 + m_1) x_1 + (n_2 + m_2) x_2 + ... + (n_k + m_k) x_k$$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Example:
$$\mathbf{Z}[x_1, x_2]$$

$$4x_1 + 2x_2$$

$$x_1 - 2x_2$$

$$-3x_1$$

$$kx_1 + nx_2$$

Z = The set of integers = $\{ ..., -2, -1, 0, 1, 2, ... \}$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Z = The set of integers =
$$\{ ..., -2, -1, 0, 1, 2, ... \}$$

$$n_1 x_1 + n_2 x_2 + ... + n_k x_k$$

where n_i are integers.

Example:
$$\mathbf{Z}[x_1, x_2]$$

$$4x_1 + 2x_2$$

$$x_1 - 2x_2$$

$$-3x_1$$

$$kx_1 + nx_2$$

Z = The set of integers = $\{ ..., -2, -1, 0, 1, 2, ... \}$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

= $(n_1 + m_1)x_1 + (n_2 + m_2)x_2 + ... + (n_k + m_k)x_k$

Example: $\mathbf{Z}[x_1, x_2]$

$$(4x_1 + 2x_2) + (3x_1 + x_2) = 7x_1 + 3x_2$$

 $(4x_1 + 2x_2) + (x_1 - 2x_2) = 5x_1$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

$$= (n_1 + m_1)x_1 + (n_2 + m_2)x_2 + ... + (n_k + m_k)x_k$$

Example: $\mathbf{Z}[\mathbf{N}, \mathbf{x}_2]$

$$(4\sqrt{2} + 2x_2) + (3\sqrt{2} + x_2) = 7\sqrt{2} + 3x_2$$

$$(4x_1 + 2x_2) + (x_1 - 2x_2) = 5x_1$$

Addition:

$$(n_1x_1 + n_2x_2 + ... + n_kx_k) + (m_1x_1 + m_2x_2 + ... + m_kx_k)$$

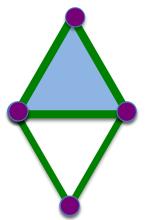
= $(n_1 + m_1)x_1 + (n_2 + m_2)x_2 + ... + (n_k + m_k)x_k$

Example: $\mathbf{Z}[x_1, x_2]$

$$(4x_1 + 2x_2) + (3x_1 + x_2) = 7x_1 + 3x_2$$

 $(4x_1 + 2x_2) + (x_1 - 2x_2) = 5x_1$

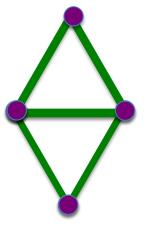
Example:



4 vertices + 5 edges + 1 faces 4v + 5e + f.

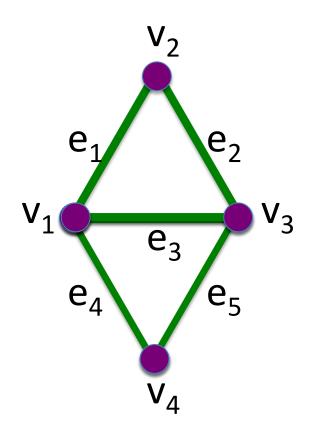
v = vertex

Example 2:

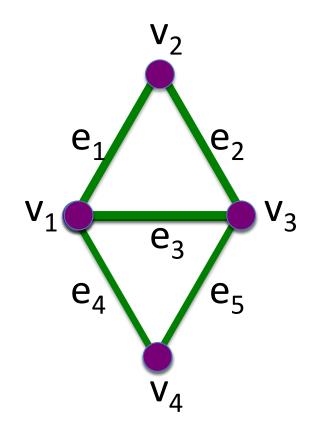


4 vertices + 5 edges 4v + 5e

v = vertex

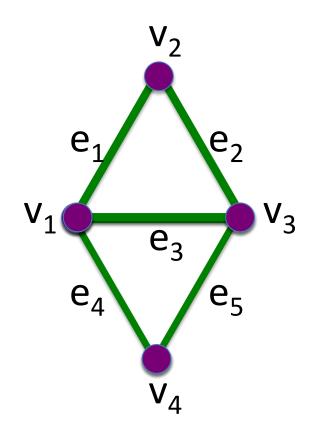


$$v_1 + v_2 + v_3 + v_4 + e_1 + e_2 + e_3 + e_4 + e_5$$

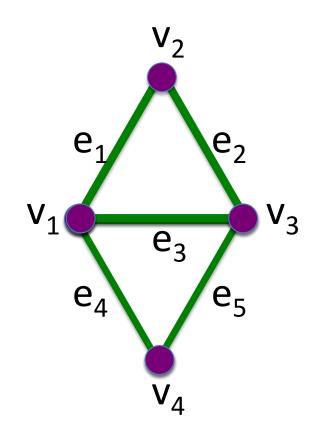


$$v_1 + v_2 + v_3 + v_4$$
 in $Z[v_1, v_2, v_3, v_4]$

 $e_1 + e_2 + e_3 + e_4 + e_5$ in $\mathbf{Z}[e_1, e_2, e_3, e_4, e_5]$

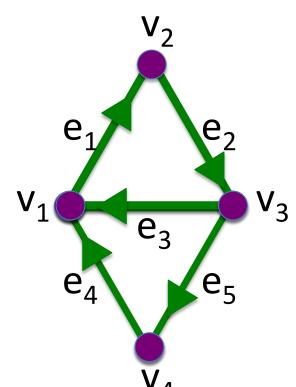


Technical note: In graph theory, the cycle also includes vertices. I.e, this cycle in graph theory is the path v_1 , e_1 , v_2 , e_2 , v_3 , e_3 , $v_{1,}$. Since we are interested in simplicial complexes (see later lecture), we only need the edges, so $e_1 + e_2 + e_3$ is a cycle.

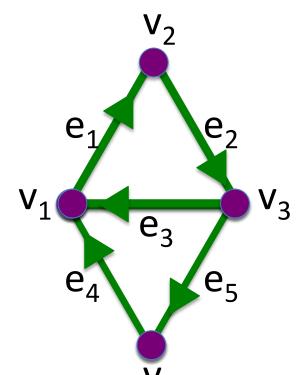


Note that $e_3 + e_4 + e_5$ is a cycle.

Technical note: In graph theory, the cycle also includes vertices. I.e, the cycle in graph theory is the path v_1 , e_1 , v_2 , e_2 , v_3 , e_3 , $v_{1,}$. Since we are interested in simplicial complexes (see later lecture), we only need the edges, so $e_1 + e_2 + e_3$ is a cycle.

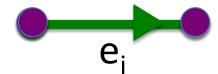


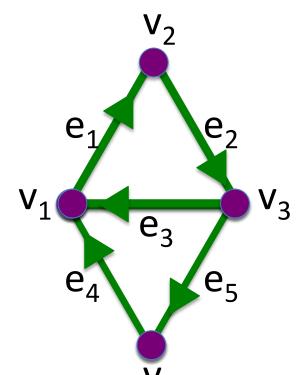
Note that $-e_3 + e_5 + e_4$ is a cycle.



Note that $-e_3 + e_4 + e_5$ is a cycle.

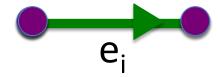
Objects: oriented edges

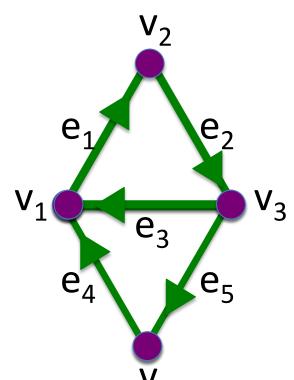




Note that $-e_3 + e_5 + e_4$ is a cycle.

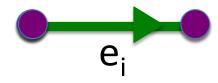
Objects: oriented edges in $\mathbf{Z}[e_1, e_2, e_3, e_4, e_5]$

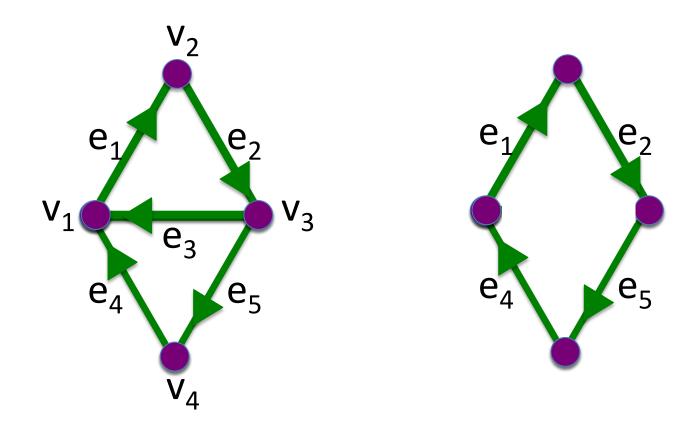




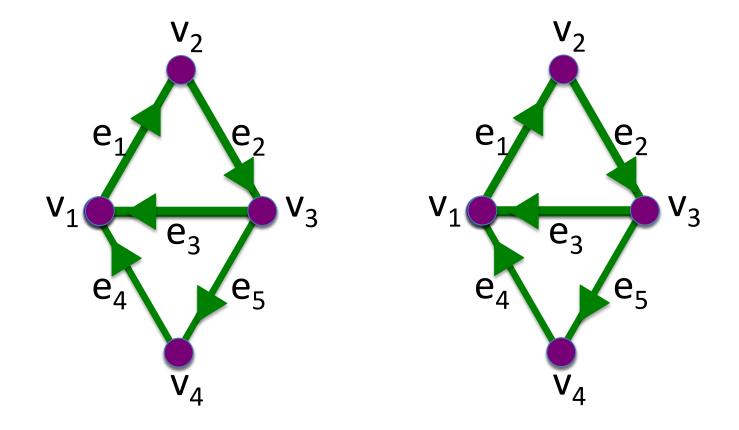
Note that $-e_3 + e_5 + e_4$ is a cycle.

Objects: oriented edges in $\mathbf{Z}[e_1, e_2, e_3, e_4, e_5]$



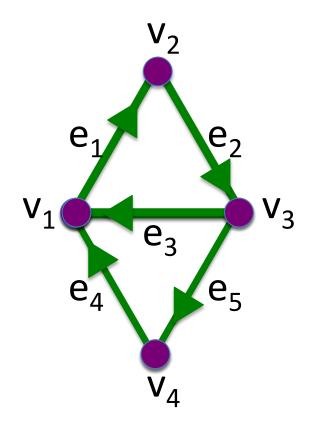


$$(e_1 + e_2 + e_3) + (-e_3 + e_5 + e_4) = e_1 + e_2 + e_5 + e_4$$

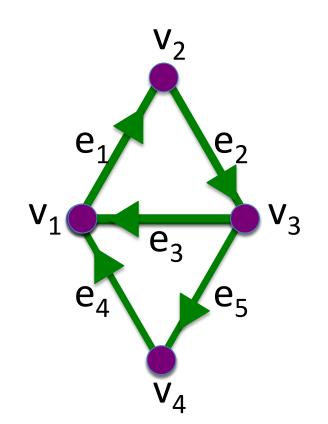


$$e_1 + e_2 + e_3 + e_1 + e_2 + e_5 + e_4 = 2e_1 + 2e_2 + e_3 + e_4 + e_5$$

 $e_1 + e_2 + e_5 + e_4 + e_1 + e_2 + e_3 = 2e_1 + 2e_2 + e_3 + e_4 + e_5$



The boundary of $e_1 = v_2 - v_1$



The boundary of $e_1 = v_2 - v_1$

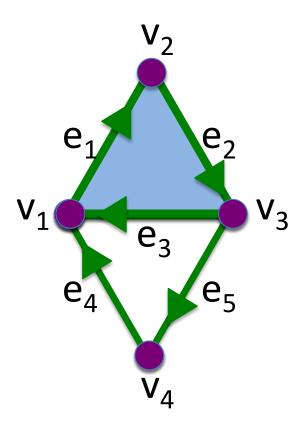
The boundary of $e_2 = v_3 - v_2$

The boundary of $e_3 = v_1 - v_3$

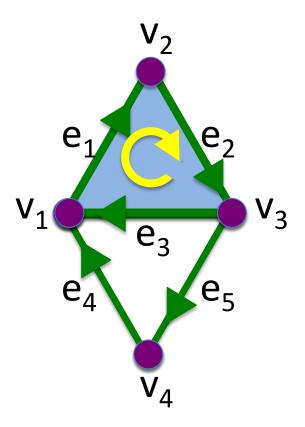
The boundary of $e_1 + e_2 + e_3$

$$= v_2 - v_1 + v_3 - v_2 + v_1 - v_3 = 0$$

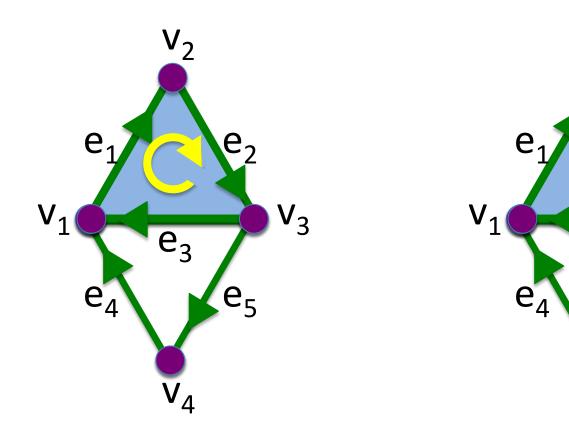
Add a face



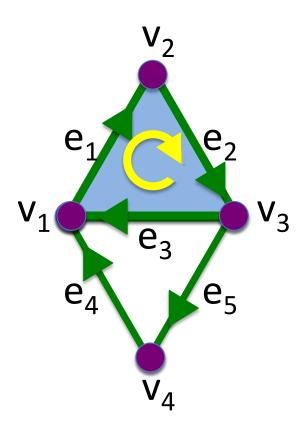
Add an oriented face



Add an oriented face

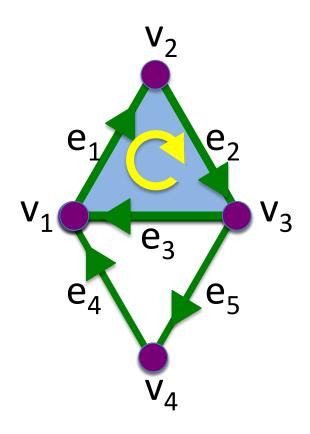


Add an oriented face



Note that the boundary of this face is the cycle $e_1 + e_2 + e_3$

Simplicial complex

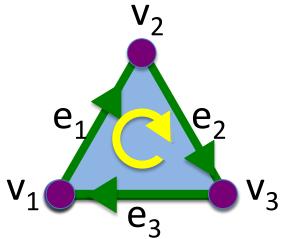


0-simplex = vertex = \vee

1-simplex = oriented edge = (v_j, v_k)

Note that the boundary of this edge is $v_k - v_i$

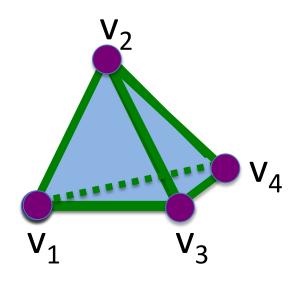
2-simplex = oriented face = (v_i, v_j, v_k)



Note that the boundary of this face is the cycle

$$e_1 + e_2 + e_3$$

3-simplex = (v_1, v_2, v_3, v_4) = tetrahedron



4-simplex = $(v_1, v_2, v_3, v_4, v_5)$