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Homology

3 ingredients:

1.) Objects
2.) Grading
3.) Boundary map






Building blocks for a simplicial complex
O-simplex = vertex=v @

1-simplex = edge = {v,, v,}
Vl‘e_. V,

2-simplex = triangle = {v,, v,, v}




Building blocks for a simplicial complex
O-simplex = vertex=v @

1-simplex = edge
Vl‘e_. V,

2-simplex = triangle




Building blocks for a simplicial complex
O-simplex = vertex = v

1-simplex = edge = {v,, v,}

2-simplex = triangle = {v,, v,, v}



Objects = generators

Generators = X = {x, | ainA}

Let R be a ring (or field)

RIX] = {nx;+n,x,+..+nx, :xinR}

Ex: Z,[X] = {nx; +n,x, + ...+ nx, :x.inZ, }



A free vector space over the field F generated by the

elements xy, X,, ..., X, consists of all elements of the

form
| NyX; + N,X, + ... + NX,
where n.in F.

Examples of a field: R = set of real numbers

Q = set of rational numbers
ZZ = {OI 1}
Addition:

(N Xy + NoX, + oo+ 0 X ) + (MyX + MoX, + o+ myx,)

=(n;+ my)x; + (N, + my)x, + ... + (n .+ m)x,

Slide from preparatory lecture 4: Addition (and free vector spaces)



A free vector space over the field F generated by the

elements x,, X, ..., X, consists of all elements of the

form
| NyX; + NyX, + ..o+ N X,
where n. in F.

Examples of a field:

R = set of real numbers:
rnx +V2y+3z isin R[x, v, 7]

Q = set of rational numbers (i.e. fractions):
(2)x + 4y is in Q[X, V]

Z,={0,1}): Ox+1ly+1w+0z isin Z,[x,y, z, w]

Slide from preparatory lecture 4: Addition (and free vector spaces)



A free abelian group generated by the elements
Xy, X5, -, X, CONSists of all elements of the form

N, X, + N,X, + .+ NEX,
where n. are integers.

Example: Z[W, 8]

48+ 28
B- 28
3%
K&+ nil
Z = The set of integers=1{...,-2,-1,0, 1, 2, ...}






Grading

Grading: Each object is assigned a unique grade
Grading = Partition of R[x]

Ex: Grade = dimension

Grade O: O-simplex =vertex=v @
_ . _ _ V1 e Vz
Grade 1: 1-simplex =edge ={v,, V,}] @
Grade 2: 2-simplex = triangle = {v,, v,, v,} 22
e e,

Vi V3

SF!



Grading

Grading: Each object is assigned a unique grade
Grading = Partition of R[x]

Ex: Grade: Cardinality

Grade 0: O-simplex = vertex = {v}
Grade 1: 1-simplex = edge = {v,, v,}
Grade 2: 2-simplex = triangle = {v,, v,, v,}

Grade 3: 3-simplex = tetrahedron = {v,, v,, v, v,}



Grading

Grading: Each object is assigned a unique grade.
Grading = Partition of R[Xx].
Let X = {X,, ..., X,} = generators of grade n.

C, = set of n-chains = R[X]






Boundary Map
0,: C =2 C_, suchthat 9% =0

Q Q
Vl‘e_.vz - v,@ ev, - 0




Boundary Map
0,: C =2 C_, suchthat 9% =0

0 Q
vi,v,} 2 {v;}+{v,} =0

vy, v,, v3} v, v,} + {v,, v5} % 0
+ {v,, V,}



n+1 an a2 a1 aO

C>C,>.9C>C>C>O0

H =Z /B = (kernel of 0,)/ (image of O,1)

null space of M

column space of M, ,,

Rank H =RankZ —Rank B,



Your name homology

3 ingredients:

1.) Objects
2.) Grading

3.) Boundary map



Unoriented simplicial complex using Z, coefficients

0-simplex =vertex=v @ |Grading=dimension

1-simplex = edge = {v,, v,}

Note that the boundary
of this edgeisv, + v,

VlH V2
e

2-simplex = face = {v,, v,, V;}

2 Note that the boundary

of this face is the cycle
e e,

e, te,+ e,
Vi V3
€3 = {V]_i Vz} + {V2; V3} + {V]_i V3}



Oriented simplicial complex

O-simplex = vertex=v @ Grading = dimension

1-simplex = oriented edge = (v,, v,)

Note that the boundary
Vl._eHVZ of this edge is v, — v,

2-simplex = oriented face = (v, v,, V)
V2 Note that the boundary
of this face is the cycle

e, + e, + e3
(V1; Vz) + (Vzr V3) — (V1; V3)

= (vy, V) = (vy, v3) + (v, V3)




Cell complex
Building block: n-cells={xinR" : || x]|]| <1 }

Examples: O-cell={xinR%: ||x]|| <1} e

1-cell =openinterval ={x inR: | [X || <1} (o

2-cell =opendisk={xinR%: ||x || <1}

Grading = dimension

O (n-cells)={xinR" : || x]] =1}



Cech homology

Given U AV where V_  open for all ain A.
o in

N

Objects = finite intersections = {_nlva_ > o in A}
| = !

Grading = n =depth of intersection.

O (Av,) = z()

| Z ]
Ex: 0 (Vo)=0, 0,(V,N Vp) =V, +V

0 (VuNVENV,) = (V,NVp) +(V, NV,) + (Vg NV,)



Creating the Cech simplicial complex



Consider X an arbitrary topological space.
letV={V.|i=1,..,n} whereV. X,
The nerve of V = N(V) where

The k -simplices of N(V) =
nonempty intersections of

k +1 distinct elements of V. @

For example,
Vertices = elements of V
Edges = pairs in V which intersect nontrivially.

Triangle = triples in V which intersect nontrivially.
http://www.math.upenn.edu/~ghrist/EAT/EATchapter2.pdf




Nerve Lemma: If Vis a finite collection of subsets of
X with all non-empty intersections of subcollections
of V contractible, then N(V) is homotopic to the

union of elements of V.

http://www.math.upenn.edu/~ghrist/EAT/EATchapter2.pdf



Creating the Vietoris Rips simplicial complex
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Betti numbers provide a signature of the underlying topology.

a b c d 8
s O & Q >
(1,0,0,0,...) (1,1,0,0,..) (1,2,1,0,..) (1,21,0,..)  (1,0,1,0,..)

Singh G et al. J Vis 2008;8:11

VISION

©2008 by Association for Research in Vision and Ophthalmology



Torus

’

If we actually fold

Q/’*(/ (A -

From: http://www.math.cornell.edu/~mec/Winter2009/Victor/partl.htm




From: http://www.math.osu.edu/~fiedorowicz.1/math655/Klein2.html
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From:
http://plus.maths.org/content/imaging-maths-inside-klein-bottle



Betti numbers provide a signature of the underlying topology.

a b c d 8
s O & Q >
(1,0,0,0,...) (1,1,0,0,..) (1,2,1,0,..) (1,21,0,..)  (1,0,1,0,..)

Singh G et al. J Vis 2008;8:11

VISION

©2008 by Association for Research in Vision and Ophthalmology



. ,:. . http://www.journalofvision.org/
% .. content/8/8/11.full

{(bo, by, B) = (50, 0, 0) Figure 4 animation

(bg, by, by) = (38, 0, D)

(g, by, By) = (1,2, 0)

(bo. b‘. b?) =(1. 2_- 1)
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Topology and Data. Gunnar Carlsson
www.ams.org/journals/bull/2009-46-02/50273-0979-09-01249-X
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e e, e e

V \" VvV V
1 3 4 6

€1 €2 €]+ ext+e3 €4 €5 €4+ €5+ €q

/(1 0 0 0 0 0 \
1 1 0 0 O 0
0 1 0 0 O 0
0 O 0 1 0 0
0 O 0 1 1 0
\ 0 0 0 0 1 0 )
Z, = kernel of 3, = null space of M,

=<e,+te,+e; e, +e. +te>






null space of M,

column space of M,

<e,+e,+e; e, te.+e>

<e,+e.+e>

Rank H; =RankZ,—RankB;, =2-1=1



