Exotic Crossed Products and Coaction Functors

S. Kaliszewski
Arizona State University

Workshop on Noncommutative Analysis
University of Iowa
June 4-5, 2016

Abstract

When a locally compact group G acts on a C^{*}-algebra A, we have both full and reduced crossed products, each carries a dual coaction of G, and each has its own version of crossed-product duality. Inspired by work of Brown and Guentner on new C^{*}-completions of group algebras, we have begun to understand what we call "exotic" crossed products -C^{*}-algebras that lie between the familiar full and reduced crossed products - and more generally, "exotic coactions".

Some of these coactions satisfy a corresponding exotic crossed product duality, intermediate between full and reduced duality, and this leads us to introduce and study "coaction functors" induced by ideals of the Fourier-Stieltjes algebra of G. These functors are also related to the crossed-product functors used recently by Baum, Guentner, and Willett in a new approach to the Baum-Connes conjecture.

This is joint work with Magnus Landstad and John Quigg.

Reduced Crossed Products

Let (B, G, α) be a C^{*}-dynamical system:
B is a C^{*}-algebra
G is a locally compact group
α is an action of G on B :
$\alpha: G \rightarrow \operatorname{Aut}(B)$ is a (strongly continuous) homomorphism
The reduced crossed product C^{*}-algebra can be defined as

$$
\begin{aligned}
& B \rtimes_{\alpha, r} G=\overline{\operatorname{span}}\left\{(\operatorname{id} \otimes \mathcal{M})(\alpha(b))(1 \otimes \lambda)(f) \mid b \in B, f \in C^{*}(G)\right\} \\
& \subseteq M\left(B \otimes \mathcal{K}\left(L^{2}(G)\right)\right),
\end{aligned}
$$

where
$\alpha(b)$ is the function $s \mapsto \alpha_{s^{-1}}(b)$ in $C_{b}(G, B) \subseteq M\left(B \otimes C_{0}(G)\right)$
$\mathcal{M}: C_{0}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ is pointwise multiplication
$\lambda: G \rightarrow \mathcal{U}\left(L^{2}(G)\right)$ is the left regular representation

The Baum-Connes

Conjecture: For any C^{*}-dynamical system (B, G, α) with secondcountable G, the reduced assembly map

$$
\mu_{\mathrm{red}}: K_{*}^{\text {top }}(G ; B) \rightarrow K_{*}\left(B \rtimes_{\alpha, r} G\right)
$$

is an isomorphism.
"Counterexamples. .. are closely connected to failures of exactness." (Baum-Guentner-Willett)

The reduced crossed product is not (in general) exact.

Full Crossed Products

The full crossed product $B \rtimes_{\alpha} G$ is the universal C^{*}-algebra for covariant representations (π, U) of (B, G, α) :
C is a C^{*}-algebra
$\pi: B \rightarrow M(C)$ is a $*$-homomorphism
$U: G \rightarrow U M(C)$ is a (continuous) homomorphism such that:

$$
\pi\left(\alpha_{s}(b)\right)=U_{s} \pi(b) U_{s}^{*}
$$

for all $b \in B$ and $s \in G$.
In other words,

where $\left(i_{B}, i_{G}\right)$ is the canonical covariant representation.

Full vs Reduced

The regular covariant representation (π, U) of (B, G, α) is defined by:

$$
\pi=(\mathrm{id} \otimes \mathcal{M}) \circ \alpha \quad U=1 \otimes \lambda \quad C=B \otimes \mathcal{K}\left(L^{2}(G)\right)
$$

This gives us the regular representation $\Lambda=\pi \times U$:

The reduced crossed product can be identified as $\Lambda\left(B \rtimes_{\alpha} G\right)$, and so

$$
B \rtimes_{\alpha} G / \operatorname{ker} \Lambda \cong B \rtimes_{\alpha, r} G
$$

A New Approach to Baum-Connes

Conjecture ($B G W$): For any C^{*}-dynamical system (B, G, α) with secondcountable G, the maximal assembly map

$$
\mu_{\max }: K_{*}^{\text {top }}(G ; B) \rightarrow K_{*}\left(B \rtimes_{\alpha} G\right)
$$

is an isomorphism.
"There are well-known Property (T) obstructions. . ." (Higson)

Another Approach. . .

"The key idea... is to study crossed products that combine the good properties of the maximal and reduced crossed products." (BGW)

An exotic crossed product is (provisionally) a quotient of $B \times{ }_{\alpha} G$ by an ideal I with $\{0\} \subsetneq I \subsetneq \operatorname{ker} \Lambda$. So we have quotient maps

$$
B \times_{\alpha} G \rightarrow\left(B \times_{\alpha} G\right) / I \rightarrow B \times_{\alpha, r} G
$$

Conjecture ($B G W$): For any C^{*}-dynamical system (B, G, α) with second-countable G, there exists an exotic crossed product $\left(B \times{ }_{\alpha} G\right) / I$ such that the exotic assembly map

$$
\mu_{\text {exotic }}: K_{*}^{\text {top }}(G ; B) \rightarrow K_{*}\left(\left(B \rtimes_{\alpha} G\right) / I\right)
$$

is an isomorphism.

Exotic Group C^{*}-Algebras

If $(B, G, \alpha)=(\mathbb{C}, G, i d)$, then

$$
B \rtimes_{\alpha} G=C^{*}(G)
$$

is the full group C^{*}-algebra, and

$$
B \rtimes_{\alpha, r} G=C_{r}^{*}(G) .
$$

is the reduced group C^{*}-algebra.

Which intermediate quotients

$$
C^{*}(G) \rightarrow C^{*}(G) / I \rightarrow C_{r}^{*}(G)
$$

behave like group C^{*}-algebras?

Work of Brown and Guentner...

Let Γ be a countable discrete group, and consider a quotient

$$
C_{D}^{*}(\Gamma) \stackrel{\text { def }}{=} C^{*}(\Gamma) / J_{D}
$$

where
D is a two-sided (algebraic) ideal of $\ell^{\infty}(\Gamma)$
$J_{D}=\bigcap\{\operatorname{ker} \pi \mid \pi$ is a D-representation of $D\}$
$\pi: \Gamma \rightarrow \mathcal{U}(\mathcal{H})$ is a D-representation if the maps $s \mapsto\left\langle\pi_{s}(\xi), \eta\right\rangle$ are in D for all ξ, η in some dense subspace of \mathcal{H}.

For example:

- $C^{*}(\Gamma)=C_{\ell \infty}^{*}(\Gamma)$
- $C_{\ell^{p}}^{*}(\Gamma)=C_{r}^{*}(\Gamma)$ for $p \in[1,2]$
- $C^{*}(\Gamma) \neq C_{\ell^{p}}^{*}(\Gamma)$ for all $p \in[1, \infty)$ if Γ is not amenable

Work of Brown and Guentner. . .

- For the free group \mathbb{F}_{n} on $n \geq 2$ generators, there exists $p \in(2, \infty)$ such that

$$
C^{*}\left(\mathbb{F}_{n}\right) \neq C_{\ell \rho}^{*}\left(\mathbb{F}_{n}\right) \neq C_{r}^{*}\left(\mathbb{F}_{n}\right)
$$

(Brown-Guentner; Willett)

- For $p<q$ in $(2, \infty)$, we have

$$
C_{\ell q}^{*}\left(\mathbb{F}_{2}\right) \neq C_{\ell p}^{*}\left(\mathbb{F}_{2}\right)
$$

(Higson-Ozawa; Okayasu)

- For any infinite Coxeter group Γ, there exists $p \in(2, \infty)$ such that

$$
C_{\ell \rho}^{*}(\Gamma) \neq C_{r}^{*}(\Gamma)
$$

(Bożejko-Januszkiewicz-Spatzier; Brown-Guentner)

Work of Brown and Guentner. . .

Observations:

- Γ is amenable if and only if $C^{*}(\Gamma)=C_{c_{c}}^{*}(\Gamma)$
- Γ has the Haagerup property if and only if $C^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma)$
- 「 has Property (T) if and only if the only (Γ-invariant) ideal D such that $C^{*}(\Gamma)=C_{D}^{*}(\Gamma)$ is ℓ^{∞}.

So for Brown and Guentner, the intermediate quotients

$$
C^{*}(G) \rightarrow C^{*}(G) / J_{D} \rightarrow C_{r}^{*}(G)
$$

behave like group C^{*}-algebras?

The Abelian Case

Recall that for G (locally compact) abelian, the Fourier transform $f \mapsto \hat{f}$ is an isomorphism

$$
C^{*}(G) \cong C_{0}(\widehat{G})
$$

where \widehat{G} is the Pontryagin dual of G.
The group structure of \widehat{G} gives $C_{0}(\widehat{G})$ extra structure: We have a homomorphism

$$
\Delta: C_{0}(\widehat{G}) \rightarrow C_{b}(\widehat{G} \times \widehat{G}) \subseteq M\left(C_{0}(\widehat{G}) \otimes C_{0}(\widehat{G})\right)
$$

defined by

$$
\Delta(\hat{f})(\chi, \eta)=\hat{f}(\chi \eta)
$$

Moreover, associativity in \widehat{G} means that $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$:

$$
\begin{aligned}
(\Delta \otimes \mathrm{id}) & \circ \Delta(\hat{f})(\xi, \eta, \nu)=\Delta(\hat{f})(\xi \eta, \nu)=\hat{f}((\xi \eta) \nu) \\
& =\hat{f}(\xi(\eta \nu))=\Delta(\hat{f})(\xi, \eta \nu)=(\mathrm{id} \otimes \Delta) \circ \Delta(\hat{f})(\xi, \eta, \nu)
\end{aligned}
$$

Comultiplication on Group C^{*}-Algebras

For general G, the homomorphism $s \mapsto i_{G}(s) \otimes i_{G}(s)$ induces a *-homomorphism

$$
\delta_{G}: C^{*}(G) \rightarrow M\left(C^{*}(G) \otimes C^{*}(G)\right)
$$

Moreover, δ_{G} is coassociative in that $\left(\delta_{G} \otimes \mathrm{id}\right) \circ \delta_{G}=\left(\mathrm{id} \otimes \delta_{G}\right) \circ \delta_{G}$:

The map δ_{G} is called the comultiplication on $C^{*}(G)$.

Comultiplication on Group C^{*}-Algebras

Similarly, the reduced group C^{*}-algebra carries a comultiplication

$$
\delta_{G}^{r}: C_{r}^{*}(G) \rightarrow M\left(C_{r}^{*}(G) \otimes C_{r}^{*}(G)\right)
$$

The regular representation is compatible with δ_{G} and δ_{G}^{r} in the sense that

So, which intermediate quotients

$$
C^{*}(G) \rightarrow C^{*}(G) / I \rightarrow C_{r}^{*}(G)
$$

carry a comultiplication compatible with the quotient maps?

Exotic Group C^{*}-Algebras

Let G be a locally compact group, and consider a quotient

$$
C_{E}^{*}(G) \stackrel{\text { def }}{=} C^{*}(G) /^{\perp} E,
$$

where

$$
\begin{aligned}
& B(G)=C^{*}(G)^{*} \subseteq C_{b}(G) \text { is the Fourier-Stieltjes algebra of } G \\
& E \text { is a weak*-closed } G \text {-invariant subspace of } B(G) \\
& { }^{\perp} E=\left\{f \in C^{*}(G) \mid\langle f, \chi\rangle=0 \text { for all } \chi \in E\right\}
\end{aligned}
$$

For example:

$$
\begin{aligned}
& C_{B(G)}^{*}(G)=C^{*}(G) \\
& C_{B_{r}(G)}^{*}(G)=C_{r}^{*}(G) \\
& C_{E}^{*}(G)=C_{r}^{*}(G) \text { for } E=\overline{\operatorname{span}\left\{L^{p}(G) \cap P(G)\right\}^{\mathrm{wk}^{*}}} \text { and } p \in[1,2]
\end{aligned}
$$

Here we view $B_{r}(G)=C_{r}^{*}(G)^{*} \subseteq B(G)$, and $P(G)$ denotes the positive elements of $C^{*}(G)^{*}$.

Exotic Group C^{*}-Algebras

If E is a weak*-closed G-invariant subalgebra of $B(G)$, then $C_{E}^{*}(G)$ has a comultiplication δ_{G}^{E}, and the quotient map is compatible with δ_{G} and δ_{G}^{E} :

If in addition $C_{E}^{*}(G)$ is a proper intermediate quotient

$$
C^{*}(G) \xrightarrow{\varrho} C_{E}^{*}(G) \xrightarrow{\varsigma} C_{r}^{*}(G),
$$

we call it (after Kayed-Sottan) an exotic group C*-algebra.

Exotic Group C^{*}-Algebras

If E is a weak*-closed G-invariant ideal of $B(G)$, then there is also a coaction δ^{E} of G on $C_{E}^{*}(G)$ such that the quotient map is $\delta_{G}-\delta^{E}$ equivariant:

More suggestively:

$$
\begin{gathered}
\mathbb{C} \rtimes_{\mathrm{id}} G \xrightarrow{\left(i_{\mathrm{C}} \otimes 1\right) \times\left(i_{G} \otimes u\right)} M\left(\left(\mathbb{C} \rtimes_{\mathrm{id}} G\right) \otimes C^{*}(G)\right) \\
\varrho \quad \begin{array}{|c}
\mid \mathrm{id} \otimes \varrho
\end{array} \\
\downarrow \\
C_{E}^{*}(G) \xrightarrow[\Sigma \circ \delta^{E}]{ } M\left(\left(\mathbb{C} \rtimes_{\mathrm{id}} G\right) \otimes C_{E}^{*}(G)\right)
\end{gathered}
$$

Mundane Crossed Products

Let (B, G, α) be a C^{*}-dynamical system.
The full crossed product $B \rtimes_{\alpha} G$ carries a dual coaction $\widehat{\alpha}$ of G, and the reduced crossed product $B \rtimes_{\alpha, r} G$ carries a dual coaction $\hat{\alpha}^{r}$ of G.

Moreover, the regular representation is $\widehat{\alpha}-\widehat{\alpha}^{r}$ equivariant:

So, which intermediate quotients

$$
B \rtimes_{\alpha} G \rightarrow\left(B \rtimes_{\alpha} G\right) / I \rightarrow B \rtimes_{\alpha, r} G
$$

carry a coaction of G compatible with $\widehat{\alpha}$ and $\widehat{\alpha}^{r}$?

Exotic Crossed Products

Let (B, G, α) be a C^{*}-dynamical system, and consider a quotient

$$
B \rtimes_{\alpha, E} G \stackrel{\text { def }}{=}\left(B \rtimes_{\alpha} G\right) / I
$$

where
E is a (nonzero) weak*-closed G-invariant ideal of $B(G)$
$\varrho: C^{*}(G) \rightarrow C_{E}^{*}(G)$ is the quotient map
$\widehat{\alpha}=\left(i_{B} \otimes 1\right) \times\left(i_{G} \otimes u\right)$ is the dual coaction of G on $B \rtimes_{\alpha} G$
I is the kernel of the map $(\mathrm{id} \otimes \varrho) \circ \widehat{\alpha}$:

$$
B \rtimes_{\alpha} G \xrightarrow{\widehat{\alpha}} M\left(\left(B \rtimes_{\alpha} G\right) \otimes C^{*}(G)\right) \xrightarrow{\mathrm{id} \otimes \varrho} M\left(\left(B \rtimes_{\alpha} G\right) \otimes C_{E}^{*}(G)\right)
$$

For example:

$$
\begin{aligned}
& B \rtimes_{\alpha, B(G)} G=B \rtimes_{\alpha} G \\
& B \rtimes_{\alpha, B_{r}(G)} G=B \rtimes_{\alpha, r} G
\end{aligned}
$$

Exotic Crossed Products

Then $B \rtimes_{\alpha, E} G$ carries a dual coaction $\widehat{\alpha}_{E}$ of G, and the quotient map is $\widehat{\alpha}-\widehat{\alpha}_{E}$ equivariant:

If $B \rtimes_{\alpha, E} G$ is a proper intermediate quotient

$$
B \rtimes_{\alpha} G \xrightarrow{\mathcal{Q}} B \rtimes_{\alpha, E} G \xrightarrow{\mathcal{R}} B \rtimes_{\alpha, r} G,
$$

we call it an exotic crossed-product.
But the construction shows that exotic crossed products are really about exotic coactions.

Mundane Coactions

Let (A, G, δ) be a (full) C^{*}-coaction:
$\delta: A \rightarrow M\left(A \otimes C^{*}(G)\right)$ is an injective nondegenerate $*$-homomorphism

such that...

and δ satisfies the coaction identity:

The coaction crossed product $A \rtimes_{\delta} G$ is universal for covariant representations of $\left(A, C_{0}(G)\right)$, and has a dual action $\hat{\delta}$ of G. There is a canonical surjection

$$
\Phi: A \rtimes_{\delta} G \rtimes_{\hat{\delta}} G \rightarrow A \otimes \mathcal{K}\left(L^{2}(G)\right) .
$$

Mundane Coactions

For example:
If (A, G, α) is an action and G is abelian, then for each $a \in A$, the rule

$$
s \mapsto \alpha_{s}(a)
$$

defines an element $\widehat{\alpha}(a)$ of $C_{b}(G, A) \subseteq M\left(C_{0}(G) \otimes A\right)$, giving a coaction

$$
\widehat{\alpha}: A \rightarrow M\left(A \otimes C^{*}(\widehat{G})\right) \cong M\left(C_{0}(G) \otimes A\right)
$$

of \widehat{G} on A such that $A \rtimes_{\widehat{\alpha}} \widehat{G} \cong A \rtimes_{\alpha} G$.
In the case $A=\mathbb{C}$, the dual coaction $\widehat{\mathrm{id}}$ of G on $\mathbb{C} \rtimes_{\mathrm{id}} G=C^{*}(G)$ is precisely the comultiplication δ_{G}.

Observe that here

$$
\mathbb{C} \rtimes_{\mathrm{id}} G \rtimes_{\widehat{\mathrm{id}}} G=C^{*}(G) \rtimes_{\delta_{G}} G=C_{0}(G) \rtimes_{\tau} G \cong \mathcal{K}\left(L^{2}(G)\right) .
$$

Exotic Coactions

Let (A, G, δ) be a C^{*}-coaction, and consider the quotient

$$
A^{E} \stackrel{\text { def }}{=} A / \operatorname{ker}(\operatorname{id} \otimes q) \circ \delta
$$

where
E is a nonzero G-invariant weak*-closed ideal of $B(G)$
$q: C^{*}(G) \rightarrow C_{E}^{*}(G)$ is the quotient map

$$
A \xrightarrow{\delta} M\left(A \otimes C^{*}(G)\right) \xrightarrow{i d \otimes q} M\left(A \otimes C_{E}^{*}(G)\right)
$$

Then:

- A^{E} carries a coaction δ^{E} of G
- $\left(B \rtimes_{\alpha} G\right)^{E}=B \rtimes_{\alpha, E} G$, and $\widehat{\alpha}^{E}=\widehat{\alpha}_{E}$
- $E=B_{r}(G)$ gives the normalization $\left(A^{n}, \delta^{n}\right)$
- $E=B(G)$ gives back (A, δ)

Exotic Crossed Product Duality

Let (A, G, δ) be a C^{*}-coaction, and let E be a nonzero G-invariant weak*-closed ideal of $B(G)$.
(A, G, δ) satisfies E-crossed-product duality if the canonical surjection $\Phi: A \rtimes_{\delta} G \rtimes_{\hat{\delta}} G \rightarrow A \otimes \mathcal{K}\left(L^{2}(G)\right)$ passes to an isomorphism:

$$
A \rtimes_{\delta} G \rtimes_{\hat{\delta}, E} G \cong A \otimes \mathcal{K}\left(L^{2}(G)\right)
$$

- Some coactions do; some don't.
- In general, δ does if and only if... (technical condition).
- δ satisfies $B(G)$-crossed-product duality if and only if δ is maximal.
- δ satisfies $B_{r}(G)$-crossed-product duality if and only if δ is normal.

Crossed-Product Functors

A crossed product is a functor

$$
(B, \alpha) \mapsto B \rtimes_{\alpha, \tau} G
$$

from $G-C^{*}$ to $C^{* *}$ together with natural transformations

$$
B \rtimes_{\alpha} G \rightarrow B \rtimes_{\alpha, \tau} G \rightarrow B \rtimes_{\alpha, r} G
$$

restricting to the identity map on the dense subalgebra(s) $B \rtimes_{\text {alg }} G$.

Each has a τ-assembly map

$$
\mu_{\tau}: K_{*}^{\text {top }}(G ; B) \rightarrow K_{*}\left(B \rtimes_{\alpha} G\right) \rightarrow K_{*}\left(B \rtimes_{\alpha, \tau} G\right) .
$$

Our predilection is to decompose such a crossed-product functor as a composition

$$
(B, \alpha) \mapsto\left(B \rtimes_{\alpha} G, \widehat{\alpha}\right) \mapsto\left(B \rtimes_{\alpha, \tau} G\right) .
$$

[^0]
Crossed Product Functors

Crossed product functors are partially ordered by saying $\sigma \leq \tau$ if the natural transformations factor this way:

$$
B \rtimes_{\alpha} G \rightarrow B \rtimes_{\alpha, \tau} G \rightarrow B \rtimes_{\alpha, \sigma} G \rightarrow B \rtimes_{\alpha, r} G
$$

A crossed product functor τ is exact if the sequence

$$
0 \rightarrow I \rtimes_{\tau} G \rightarrow B \rtimes_{\tau} G \rightarrow C \rtimes_{\tau} G \rightarrow 0
$$

is short exact in C^{*} whenever $0 \rightarrow I \rightarrow B \rightarrow C \rightarrow 0$ is short exact in $G-C^{*}$.
τ is Morita compatible (roughly speaking) if

$$
B \rtimes_{\alpha, \tau} G \stackrel{M}{\sim} C \rtimes_{\gamma, \tau} G
$$

whenever $B \sim \mathcal{N}$ equivariantly .
Both the full and reduced crossed products are Morita compatible.

Back to the Baum-Connes

Conjecture (BGW) For any $G-C^{*}$-algebra A, the \mathcal{E}-assembly map

$$
\mu_{\mathcal{E}}: K_{*}^{\text {top }}(G ; A) \rightarrow K_{*}\left(A \rtimes_{\mathcal{E}} G\right)
$$

is an isomorphism, where \mathcal{E} is the unique minimal exact and Morita compatible crossed product.

Theorem (BGW, KLQ) For any second countable locally compact group G, there exists a unique minimal exact and Morita compatible crossed product \mathcal{E}.

References

1. N. Higson, The Baum-Connes conjecture, in Proceedings of the International Congress of Mathematicians, vol. II, 1998.
2. Kyed-Sołtan, Property (T) and exotic quantum group norms, arXiv:1006.4044
3. Brown-Guentner, New C^{*}-completions of discrete groups and related spaces, arXiv:1205.4649
4. K-Landstad-Quigg, Exotic group C*-algebras in noncommutative duality, arXiv:1211.4982
5. \qquad , Exotic coactions, arXiv:1305.5489
6. Baum-Guentner-Willett, Expanders, exact crossed products, and the Baum-Connes conjecture, arXiv:1311.2343
7. Buss-Echterhoff-Willett, Exotic crossed products and the Baum-Connes conjecture, arXiv:1409.4332
8. K-Landstad-Quigg, Coaction functors, arXiv:1505.03487
9. ___ Exact large ideals of $B(G)$ are downward directed, arXiv:1508.00284
10. Buss-Echterhoff-Willett, Exotic crossed products, arXiv:1510:02556

[^0]: * C^{*}-algebras with *-homomorphisms

