Exotic Crossed Products and Coaction Functors

S. Kaliszewski Arizona State University

Workshop on Noncommutative Analysis University of Iowa June 4–5, 2016

Abstract

When a locally compact group G acts on a C^* -algebra A, we have both full and reduced crossed products, each carries a dual coaction of G, and each has its own version of crossed-product duality. Inspired by work of Brown and Guentner on new C^* -completions of group algebras, we have begun to understand what we call "exotic" crossed products — C^* -algebras that lie between the familiar full and reduced crossed products — and more generally, "exotic coactions".

Some of these coactions satisfy a corresponding exotic crossed product duality, intermediate between full and reduced duality, and this leads us to introduce and study "coaction functors" induced by ideals of the Fourier-Stieltjes algebra of G. These functors are also related to the crossed-product functors used recently by Baum, Guentner, and Willett in a new approach to the Baum-Connes conjecture.

This is joint work with Magnus Landstad and John Quigg.

Reduced Crossed Products

Let (B, G, α) be a C^* -dynamical system: B is a C^* -algebra G is a locally compact group α is an action of G on B: $\alpha: G \rightarrow Aut(B)$ is a (strongly continuous) homomorphism

The reduced crossed product C*-algebra can be defined as

 $B \rtimes_{\alpha,r} G = \overline{span}\{(\mathrm{id} \otimes \mathcal{M})(\alpha(b))(1 \otimes \lambda)(f) \mid b \in B, f \in C^*(G)\}$ $\subseteq \mathcal{M}(B \otimes \mathcal{K}(L^2(G))),$

where

 $\alpha(b)$ is the function $s \mapsto \alpha_{s^{-1}}(b)$ in $C_b(G, B) \subseteq M(B \otimes C_0(G))$ $\mathcal{M}: C_0(G) \to \mathcal{B}(L^2(G))$ is pointwise multiplication $\lambda: G \to \mathcal{U}(L^2(G))$ is the left regular representation

The Baum-Connes

Conjecture: For any C^* -dynamical system (B, G, α) with second-countable G, the *reduced assembly map*

$$\mu_{\mathrm{red}} \colon K^{top}_*(G; B) \to K_*(B \rtimes_{\alpha, r} G)$$

is an isomorphism.

"Counterexamples... are closely connected to failures of *exactness*." (*Baum-Guentner-Willett*)

The reduced crossed product is not (in general) exact.

Full Crossed Products

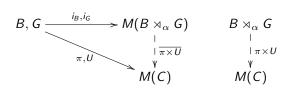
The *full crossed product* $B \rtimes_{\alpha} G$ is the universal C^* -algebra for *covariant* representations (π, U) of (B, G, α) :

C is a C*-algebra $\pi: B \to M(C)$ is a *-homomorphism $U: G \to UM(C)$ is a (continuous) homomorphism such that:

$$\pi(\alpha_s(b)) = U_s \pi(b) U_s^*$$

for all $b \in B$ and $s \in G$.

In other words,



where (i_B, i_G) is the canonical covariant representation.

Full vs Reduced

The regular covariant representation (π, U) of (B, G, α) is defined by:

$$\pi = (\mathrm{id} \otimes \mathcal{M}) \circ \alpha \quad U = 1 \otimes \lambda \quad C = B \otimes \mathcal{K}(L^2(G))$$

This gives us the *regular representation* $\Lambda = \pi \times U$:

The reduced crossed product can be identified as $\Lambda(B \rtimes_{\alpha} G)$, and so

$$B \rtimes_{\alpha} G / \ker \Lambda \cong B \rtimes_{\alpha, r} G$$

A New Approach to Baum-Connes

Conjecture (*BGW*): For any C*-dynamical system (B, G, α) with second-countable G, the maximal assembly map

$$\mu_{\max} \colon K^{top}_*(G; B) \to K_*(B \rtimes_{\alpha} G)$$

is an isomorphism.

"There are well-known Property (T) obstructions..." (Higson)

Another Approach...

"The key idea... is to study crossed products that combine the good properties of the maximal and reduced crossed products." (BGW)

An exotic crossed product is (provisionally) a quotient of $B \times_{\alpha} G$ by an ideal I with $\{0\} \subsetneq I \subsetneq \ker \Lambda$. So we have quotient maps

$$B \times_{\alpha} G \to (B \times_{\alpha} G)/I \to B \times_{\alpha,r} G$$

Conjecture (BGW): For any C*-dynamical system (B, G, α) with second-countable G, there exists an exotic crossed product $(B \times_{\alpha} G)/I$ such that the exotic assembly map

$$\mu_{\text{exotic}} \colon K^{\text{top}}_*(G; B) \to K_*((B \rtimes_{\alpha} G)/I)$$

is an isomorphism.

If $(B, G, \alpha) = (\mathbb{C}, G, \mathrm{id})$, then

$$B\rtimes_{lpha} G=C^*(G)$$

is the full group C*-algebra, and

$$B\rtimes_{\alpha,r} G = C_r^*(G).$$

is the reduced group C^* -algebra.

Which intermediate quotients

$$C^*(G) \to C^*(G)/I \to C^*_r(G)$$

behave like group C^* -algebras?

Work of Brown and Guentner...

Let Γ be a countable discrete group, and consider a quotient

 $C_D^*(\Gamma) \stackrel{def}{=} C^*(\Gamma)/J_D,$

where

$$\begin{array}{l} D \text{ is a two-sided (algebraic) ideal of } \ell^{\infty}(\Gamma) \\ J_{D} = \bigcap \bigl\{ \ker \pi \mid \pi \text{ is a } D\text{-representation of } D \bigr\} \\ \pi \colon \Gamma \to \mathcal{U}(\mathcal{H}) \text{ is a } D\text{-representation if} \\ & \text{ the maps } s \mapsto \langle \pi_{s}(\xi), \eta \rangle \text{ are in } D \\ & \text{ for all } \xi, \eta \text{ in some dense subspace of } \mathcal{H}. \end{array}$$

For example:

•
$$C^*(\Gamma) = C^*_{\ell^{\infty}}(\Gamma)$$

•
$$C^*_{\ell^p}(\Gamma) = C^*_r(\Gamma)$$
 for $p \in [1,2]$

▶ $C^*(\Gamma) \neq C^*_{\ell^p}(\Gamma)$ for all $p \in [1,\infty)$ if Γ is not amenable

Work of Brown and Guentner...

▶ For the free group \mathbb{F}_n on $n \ge 2$ generators, there exists $p \in (2, \infty)$ such that

$$C^*(\mathbb{F}_n) \neq C^*_{\ell^p}(\mathbb{F}_n) \neq C^*_r(\mathbb{F}_n)$$

(Brown-Guentner; Willett)

For p < q in $(2, \infty)$, we have

$$C^*_{\ell^q}(\mathbb{F}_2) \neq C^*_{\ell^p}(\mathbb{F}_2)$$

(Higson-Ozawa; Okayasu)

▶ For any infinite Coxeter group Γ , there exists $p \in (2, \infty)$ such that

$$C^*_{\ell^p}(\Gamma) \neq C^*_r(\Gamma)$$

(Bożejko-Januszkiewicz-Spatzier; Brown-Guentner)

Work of Brown and Guentner...

Observations:

- Γ is amenable if and only if $C^*(\Gamma) = C^*_{c_c}(\Gamma)$
- Γ has the Haagerup property if and only if $C^*(\Gamma) = C^*_{c_0}(\Gamma)$
- F has Property (T) if and only if the only (Γ-invariant) ideal D such that C*(Γ) = C^{*}_D(Γ) is ℓ[∞].

So for Brown and Guentner, the intermediate quotients

$$C^*(G) o C^*(G)/J_D o C^*_r(G)$$

behave like group C^* -algebras?

The Abelian Case

Recall that for G (locally compact) abelian, the Fourier transform $f\mapsto \hat{f}$ is an isomorphism

$$C^*(G)\cong C_0(\widehat{G})$$

where \widehat{G} is the Pontryagin dual of G.

The group structure of \widehat{G} gives $C_0(\widehat{G})$ extra structure: We have a homomorphism

$$\Delta\colon C_0(\widehat{G})\to C_b(\widehat{G}\times\widehat{G})\subseteq M(C_0(\widehat{G})\otimes C_0(\widehat{G}))$$

defined by

$$\Delta(\hat{f})(\chi,\eta) = \hat{f}(\chi\eta).$$

Moreover, associativity in \widehat{G} means that $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$:

$$egin{aligned} &(\Delta\otimes\mathrm{id})\circ\Delta(\hat{f})(\xi,\eta,
u)=\Delta(\hat{f})(\xi\eta,
u)=\hat{f}((\xi\eta)
u)\ &=\hat{f}(\xi(\eta
u))=\Delta(\hat{f})(\xi,\eta
u)=(\mathrm{id}\otimes\Delta)\circ\Delta(\hat{f})(\xi,\eta,
u). \end{aligned}$$

Comultiplication on Group C^* -Algebras

For general G, the homomorphism $s \mapsto i_G(s) \otimes i_G(s)$ induces a *-homomorphism

$$\delta_G\colon C^*(G)\to M(C^*(G)\otimes C^*(G))$$

Moreover, δ_G is *coassociative* in that $(\delta_G \otimes id) \circ \delta_G = (id \otimes \delta_G) \circ \delta_G$:

$$C^{*}(G) \xrightarrow{\delta_{G}} M(C^{*}(G) \otimes C^{*}(G))$$

$$\downarrow^{\delta_{G} \otimes \mathrm{id}}$$

$$M(C^{*}(G) \otimes C^{*}(G)) \xrightarrow{\mathrm{id} \otimes \delta_{G}} M(C^{*}(G) \otimes C^{*}(G) \otimes C^{*}(G))$$

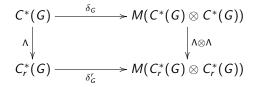
The map δ_G is called the *comultiplication* on $C^*(G)$.

Comultiplication on Group C^* -Algebras

Similarly, the reduced group C^* -algebra carries a comultiplication

$$\delta_G^r\colon C_r^*(G)\to M(C_r^*(G)\otimes C_r^*(G))$$

The regular representation is *compatible* with δ_G and δ_G^r in the sense that



So, which intermediate quotients

$$C^*(G) \to C^*(G)/I \to C^*_r(G)$$

carry a comultiplication compatible with the quotient maps?

Let G be a locally compact group, and consider a quotient

$$C^*_E(G) \stackrel{def}{=} C^*(G)/{}^{\perp}E,$$

where

 $B(G) = C^*(G)^* \subseteq C_b(G) \text{ is the Fourier-Stieltjes algebra of } G$ E is a weak*-closed G-invariant subspace of B(G) ${}^{\perp}E = \{f \in C^*(G) \mid \langle f, \chi \rangle = 0 \text{ for all } \chi \in E\}$

For example:

$$C^*_{B(G)}(G) = C^*(G)$$

$$C^*_{B_r(G)}(G) = C^*_r(G)$$

$$C^*_E(G) = C^*_r(G) \text{ for } E = \overline{span\{L^p(G) \cap P(G)\}}^{Wk^*} \text{ and } p \in [1,2]$$

Here we view $B_r(G) = C_r^*(G)^* \subseteq B(G)$, and P(G) denotes the positive elements of $C^*(G)^*$.

If *E* is a weak*-closed *G*-invariant subalgebra of B(G), then $C_E^*(G)$ has a comultiplication δ_G^E , and the quotient map is compatible with δ_G and δ_G^E :

If in addition $C_E^*(G)$ is a proper intermediate quotient

$$C^*(G) \xrightarrow{\varrho} C^*_E(G) \xrightarrow{\varsigma} C^*_r(G),$$

we call it (after Kayed-Soltan) an exotic group C*-algebra.

If *E* is a weak*-closed *G*-invariant *ideal* of *B*(*G*), then there is also a *coaction* δ^E of *G* on $C_E^*(G)$ such that the quotient map is $\delta_G - \delta^E$ equivariant:

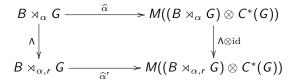
More suggestively:

Mundane Crossed Products

Let (B, G, α) be a C^* -dynamical system.

The full crossed product $B \rtimes_{\alpha} G$ carries a *dual coaction* $\widehat{\alpha}$ of G, and the reduced crossed product $B \rtimes_{\alpha,r} G$ carries a *dual coaction* $\widehat{\alpha}^r$ of G.

Moreover, the regular representation is $\hat{\alpha} - \hat{\alpha}^r$ equivariant:



So, which intermediate quotients

$$B
times_lpha G
ightarrow (B
times_lpha G)/I
ightarrow B
times_{lpha,r}G$$

carry a coaction of G compatible with $\widehat{\alpha}$ and $\widehat{\alpha}^r$?

Exotic Crossed Products

Let (B, G, α) be a C*-dynamical system, and consider a quotient

$$B\rtimes_{\alpha,E}G\stackrel{def}{=}(B\rtimes_{\alpha}G)/I,$$

where

E is a (nonzero) weak*-closed *G*-invariant *ideal* of *B*(*G*)

$$\varrho: C^*(G) \to C^*_E(G)$$
 is the quotient map
 $\widehat{\alpha} = (i_B \otimes 1) \times (i_G \otimes u)$ is the dual coaction of *G* on $B \rtimes_{\alpha} G$
I is the kernel of the map (id $\otimes \varrho$) $\circ \widehat{\alpha}$:

$$B\rtimes_{\alpha} G \xrightarrow{\widehat{\alpha}} M((B\rtimes_{\alpha} G) \otimes C^{*}(G)) \xrightarrow{\mathrm{id}\otimes\varrho} M((B\rtimes_{\alpha} G) \otimes C^{*}_{E}(G))$$

For example:

$$B \rtimes_{\alpha,B(G)} G = B \rtimes_{\alpha} G$$
$$B \rtimes_{\alpha,B_{r}(G)} G = B \rtimes_{\alpha,r} G$$

Exotic Crossed Products

Then $B \rtimes_{\alpha,E} G$ carries a *dual coaction* $\widehat{\alpha}_E$ of G, and the quotient map is $\widehat{\alpha} - \widehat{\alpha}_E$ equivariant:

$$\begin{array}{c|c} B \rtimes_{\alpha} G & & \widehat{\alpha} & \longrightarrow M((B \rtimes_{\alpha} G) \otimes C^{*}(G)) \\ & & & & \downarrow^{\mathcal{Q} \otimes \mathrm{id}} \\ B \rtimes_{\alpha, E} G & & & \longrightarrow M((B \rtimes_{\alpha, E} G) \otimes C^{*}(G)) \end{array}$$

If $B \rtimes_{\alpha, E} G$ is a *proper* intermediate quotient

$$B\rtimes_{\alpha} G \xrightarrow{\mathcal{Q}} B\rtimes_{\alpha,E} G \xrightarrow{\mathcal{R}} B\rtimes_{\alpha,r} G,$$

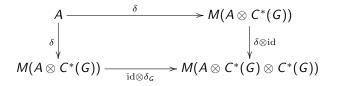
we call it an exotic crossed-product.

But the construction shows that exotic crossed products are really about *exotic coactions*.

Mundane Coactions

Let (A, G, δ) be a (full) C^* -coaction: $\delta \colon A \to M(A \otimes C^*(G))$ is an injective nondegenerate *-homomorphism such that...

and δ satisfies the coaction identity:



The coaction crossed product $A \rtimes_{\delta} G$ is universal for covariant representations of $(A, C_0(G))$, and has a dual action $\hat{\delta}$ of G. There is a canonical surjection

$$\Phi\colon A\rtimes_{\delta}G\rtimes_{\hat{\delta}}G\to A\otimes\mathcal{K}(L^2(G)).$$

Mundane Coactions

For example:

If (A, G, α) is an *action* and G is abelian, then for each $a \in A$, the rule

 $s \mapsto \alpha_s(a)$

defines an element $\widehat{\alpha}(a)$ of $C_b(G, A) \subseteq M(C_0(G) \otimes A)$, giving a coaction

$$\widehat{\alpha} \colon A \to M(A \otimes C^*(\widehat{G})) \cong M(C_0(G) \otimes A)$$

of \widehat{G} on A such that $A \rtimes_{\widehat{\alpha}} \widehat{G} \cong A \rtimes_{\alpha} G$.

In the case $A = \mathbb{C}$, the dual coaction \widehat{id} of G on $\mathbb{C} \rtimes_{id} G = C^*(G)$ is precisely the comultiplication δ_G .

Observe that here

$$\mathbb{C}\rtimes_{\mathrm{id}} G \rtimes_{\widehat{\mathrm{id}}} G = C^*(G) \rtimes_{\delta_G} G = C_0(G) \rtimes_{\tau} G \cong \mathcal{K}(L^2(G)).$$

Exotic Coactions

Let (A, G, δ) be a C^{*}-coaction, and consider the quotient

$${\it A}^{\it E} \stackrel{
m {\it def}}{=} {\it A}/\ker({
m id}\otimes {\it q})\circ \delta$$

where

E is a nonzero *G*-invariant weak*-closed ideal of B(G) $q: C^*(G) \to C^*_E(G)$ is the quotient map

$$A \xrightarrow{\delta} M(A \otimes C^*(G)) \xrightarrow{\operatorname{id} \otimes q} M(A \otimes C^*_E(G))$$

Then:

- A^E carries a coaction δ^E of G
- $(B \rtimes_{\alpha} G)^{E} = B \rtimes_{\alpha, E} G$, and $\widehat{\alpha}^{E} = \widehat{\alpha}_{E}$

•
$$E = B_r(G)$$
 gives the normalization (A^n, δ^n)

•
$$E = B(G)$$
 gives back (A, δ)

Exotic Crossed Product Duality

Let (A, G, δ) be a C^* -coaction, and let E be a nonzero G-invariant weak*-closed ideal of B(G).

 (A, G, δ) satisfies *E-crossed-product duality* if the canonical surjection $\Phi: A \rtimes_{\delta} G \rtimes_{\hat{\delta}} G \to A \otimes \mathcal{K}(L^2(G))$ passes to an isomorphism:

$$A \rtimes_{\delta} G \rtimes_{\hat{\delta}, E} G \cong A \otimes \mathcal{K}(L^{2}(G))$$

- Some coactions do; some don't.
- In general, δ does if and only if... (technical condition).
- δ satisfies B(G)-crossed-product duality if and only if δ is maximal.
- δ satisfies $B_r(G)$ -crossed-product duality if and only if δ is normal.

Crossed-Product Functors

A crossed product is a functor

$$(B, \alpha) \mapsto B \rtimes_{\alpha, \tau} G$$

from G- C^* to C^{**} together with natural transformations

$$B \rtimes_{\alpha} G \to B \rtimes_{\alpha, \tau} G \to B \rtimes_{\alpha, r} G$$

restricting to the identity map on the dense subalgebra(s) $B \rtimes_{alg} G$.

Each has a τ -assembly map

$$\mu_{\tau} \colon K^{top}_{*}(G; B) \to K_{*}(B \rtimes_{\alpha} G) \to K_{*}(B \rtimes_{\alpha, \tau} G).$$

Our predilection is to decompose such a crossed-product functor as a composition

$$(B,\alpha)\mapsto (B\rtimes_{\alpha}G,\widehat{\alpha})\mapsto (B\rtimes_{\alpha,\tau}G).$$

^{*} C*-algebras with *-homomorphisms

Crossed Product Functors

Crossed product functors are partially ordered by saying $\sigma \leq \tau$ if the natural transformations factor this way:

$$B \rtimes_{\alpha} G \to B \rtimes_{\alpha, \tau} G \to B \rtimes_{\alpha, \sigma} G \to B \rtimes_{\alpha, r} G$$

A crossed product functor τ is *exact* if the sequence

$$0 \rightarrow I \rtimes_{\tau} G \rightarrow B \rtimes_{\tau} G \rightarrow C \rtimes_{\tau} G \rightarrow 0$$

is short exact in C^* whenever $0 \rightarrow I \rightarrow B \rightarrow C \rightarrow 0$ is short exact in G- C^* .

 τ is Morita compatible (roughly speaking) if

$$B\rtimes_{\alpha,\tau}G\overset{M}{\sim}C\rtimes_{\gamma,\tau}G$$

whenever $B \stackrel{M}{\sim} C$ equivariantly .

Both the full and reduced crossed products are Morita compatible.

Back to the Baum-Connes

Conjecture (BGW) For any G- C^* -algebra A, the \mathcal{E} -assembly map

$$\mu_{\mathcal{E}} \colon K^{top}_*(G; A) \to K_*(A \rtimes_{\mathcal{E}} G)$$

is an isomorphism, where \mathcal{E} is the unique minimal exact and Morita compatible crossed product.

Theorem (BGW, KLQ) For any second countable locally compact group G, there exists a unique minimal exact and Morita compatible crossed product \mathcal{E} .

References

- 1. N. Higson, *The Baum-Connes conjecture*, in Proceedings of the International Congress of Mathematicians, vol. II, 1998.
- 2. Kyed-Sołtan, Property (T) and exotic quantum group norms, arXiv:1006.4044
- Brown-Guentner, New C*-completions of discrete groups and related spaces, arXiv:1205.4649
- K-Landstad-Quigg, Exotic group C*-algebras in noncommutative duality, arXiv:1211.4982
- 5. , Exotic coactions, arXiv:1305.5489
- 6. Baum-Guentner-Willett, *Expanders, exact crossed products, and the Baum-Connes conjecture*, arXiv:1311.2343
- 7. Buss-Echterhoff-Willett, *Exotic crossed products and the Baum-Connes conjecture*, arXiv:1409.4332
- 8. K-Landstad-Quigg, Coaction functors, arXiv:1505.03487
- 9. ____, Exact large ideals of B(G) are downward directed, arXiv:1508.00284
- Buss-Echterhoff-Willett, Exotic crossed products, arXiv:1510:02556