Convergence Properties and Upper-Triangular Forms in Finite von Neumann Algebras

K. Dykema ¹ J. Noles ¹ D. Zanin ²

¹Texas A&M University, College Station, TX.

²University of New South Wales, Kensington, NSW, Australia

June 4, 2016

Theorem (Schur)

For every matrix $T \in M_n(\mathbb{C})$ there exists a unitary matrix $U \in M_n(\mathbb{C})$ such that $U^{-1}TU$ is an upper-triangular matrix.

Note that the diagonal entries of $U^{-1}TU$ are the eigenvalues of T. Hence the theorem gives a decomposition T = N + Q, where N is normal and Q is nilpotent. An operator T is called **quasinilpotent** if $||T^n||^{1/n} \to 0$ as $n \to \infty$.

Equivalently, T is quasinilpotent if $((T^*)^n T^n)^{1/2n}$ converges to 0 in norm as $n \to \infty$.

T is called **sot-quasinilpotent** if $((T^*)^n T^n)^{1/2n}$ converges to 0 in s.o.t. as $n \to \infty$. Example: the left shift operator on $\ell^2(\mathbb{N})$.

Theorem (Brown 1983)

Let \mathcal{M} be a finite von Neumann algebra with trace τ and let $T \in \mathcal{M}$. There exists a unique probability measure ν_T supported on a compact subset of the spectrum of T such that for any $\lambda \in \mathbb{C}$,

$$au(\log(|\mathcal{T}-\lambda|)) = \int_{\mathbb{C}} \log(|z-\lambda|) d
u_{\mathcal{T}}(z).$$

The measure ν_T is called the **Brown measure** of *T*. The Brown measure of a normal operator is the trace composed with the projection valued spectral decomposition measure.

Theorem (Haagerup, Schultz 2009)

An operator T in a finite von Neumann algebra is sot-quasinilpotent if and only if $\nu_T(\{0\}) = 1$.

Theorem (Haagerup, Schultz 2009)

Let \mathcal{M} be a finite von Neumann algebra with trace τ and let $T \in \mathcal{M}$. For any Borel set $B \subset \mathbb{C}$, there exists a unique projection $HS(T,B) \in \mathcal{M}$ such that

• $\tau(HS(T,B)) = \nu_T(B)$, where ν_T is the Brown measure of T,

$$THS(T,B) = HS(T,B)THS(T,B),$$

if HS(T, B) ≠ 0, then the Brown measure of THS(T, B), considered as an element of HS(T, B),MHS(T, B), is concentrated in B,

• if $HS(T, B) \neq 1$, then the Brown measure of (1 - HS(T, B))T, considered as an element of $(1 - HS(T, B))\mathcal{M}(1 - HS(T, B))$, is concentrated in $\mathbb{C} \setminus B$.

In fact, HS(T, B) is *T*-hyperinvariant, meaning that if $S \in B(\mathcal{H})$ commutes with *T*, then HS(T, B) is *S*-invariant. If $B_1 \subset B_2 \subset \mathbb{C}$, then $HS(T, B_1) \leq HS(T, B_2)$

The projection HS(T, B) is called the Haagerup-Schultz projection of T associated to the set B.

The Haagerup-Schultz projections of a normal operator are the spectral projections.

The Haagerup-Schultz projection of the matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

associated with the set $\{0\}$ is the projection onto the kernel of the matrix

which is

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right),$$
$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right).$$

The Haagerup-Schultz projection of the matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$$

associated with the set $\{1\}$ is the projection onto the kernel of the matrix

$$\left(\begin{array}{rrr} -1 & 1 \\ 0 & 0 \end{array}\right),$$

which is

$$\left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array}\right).$$

Theorem (Haagerup,Schultz 2009)

If T is an element of a finite von Neumann algebra, then the sequence $((T^*)^n T^n)^{1/2n}$ converges in the strong operator topology to a positive operator A. The spectral projection of A associated with the set [0, r] is $HS(T, \overline{r\mathbb{D}})$.

Theorem (Dykema, Sukochev, Zanin 2015)

Let \mathcal{M} be a finite von Neumann algebra with trace τ and let $T \in \mathcal{M}$. Then there exist $N, Q \in \mathcal{M}$ such that

$$T = N + Q$$

- It the operator N is normal and the Brown measure of N equals that of T
- the operator Q is sot-quasinilpotent.

Dykema, Sukochev and Zanin use a continuous surjection $\phi : [0,1] \rightarrow ||T||\overline{\mathbb{D}}$. The normal operator N is the conditional expectation of T onto the algebra generated by the Haagerup-Schultz projections $HS(T, \phi([0, t]))$ for $t \in [0, 1]$. Since all of these projections are T-invariant, this is a generalization of the Schur decomposition.

For the remainder of the talk, the term upper-triangular decomposition will refer to a decomposition T = N + Q obtained by the construction of Dykema, Sukochev and Zanin.

(Dykema) Is it possible for an operator T to have two upper-triangular decompositions T = N₁ + Q₁ and T = N₂ + Q₂ such that Q₁ is quasinilpotent but Q₂ is not?

- (Dykema) Is it possible for an operator T to have two upper-triangular decompositions T = N₁ + Q₁ and T = N₂ + Q₂ such that Q₁ is quasinilpotent but Q₂ is not?
- **2** When does the sequence $((T^*)^n T^n)^{1/2n}$ converge in norm?

(Dykema) Is it possible for an operator T to have two upper-triangular decompositions T = N₁ + Q₁ and T = N₂ + Q₂ such that Q₁ is quasinilpotent but Q₂ is not?

2 When does the sequence $((T^*)^n T^n)^{1/2n}$ converge in norm?

If $supp(\nu_T)$ is a finite set, then Question 1 has a negative answer.

Observation (Brown 1983)

If T is an operator in a von Neumann algebra with a trace, then every connected component of the spectrum of T intersects the support of ν_T .

Lemma (DNZ)

If T is an operator in a von Neumann algebra with a trace, and there exists an upper-triangular decomposition T = N + Q of T with Q quasinilpotent, then $\sigma(T) = supp(\nu_T)$.

Observation (Brown 1983)

If T is an operator in a von Neumann algebra with a trace, then every connected component of the spectrum of T intersects the support of ν_T .

Lemma (DNZ)

If T is an operator in a von Neumann algebra with a trace, and there exists an upper-triangular decomposition T = N + Q of T with Q quasinilpotent, then $\sigma(T) = supp(\nu_T)$.

Proposition (DNZ)

If T is an operator with finitely supported Brown measure, then there exists an upper-triangular decomposition T = N + Q with Q quasinilpotent if and only if for any upper-triangular decomposition T = N + Q, Q is quasinilpotent.

Definition (DNZ)

An operator T has the **norm convergence property** if the sequence $((T^*)^n T^n)^{1/2n}$ converges in norm.

Conjecture (N)

T has the norm-convergence property if and only if there exists an upper-triangular decomposition T = N + Q with Q quasinilpotent.

Proposition (DNZ)

If Q is sot-quasinilpotent, then 1 + Q has the norm-convergence property if and only if $\sigma(Q) \subset \mathbb{T} - 1$.

Theorem (DNZ)

There exists an sot-quasinilpotent operator Q with $\sigma(Q) = \mathbb{T} - 1$.

Definition (DNZ)

An operator T in a finite von Neumann algebra is said to have the **shifted norm-convergence property** if $T - \lambda I$ has the norm convergence property for all $\lambda \in \mathbb{C}$.

Lemma (DNZ)

Let T be an element of a tracial von Neumann algebra \mathcal{M} and for $r \geq 0$, let P_r denote the Haagerup-Schultz projection of T associated with the closed disc of radius r. Then T has the norm convergence property if and only if for any $s \geq 0$, the spectrum of $P_s TP_s$ is contained in the closed disc of radius s and when $P_s \neq 1$, the spectrum of $(1 - P_s)T(1 - P_s)$ is contained in the complement of the open disc of radius s.

Proposition (DNZ)

Let \mathcal{M} be a finite von Neumann algebra with a trace τ and $T \in \mathcal{M}$. Then T and T^{*} both have the shifted norm convergence property if and only if

- For any Borel set B, the spectrum of HS(T, B)THS(T, B) is a subset of \overline{B} when $HS(T, B) \neq 0$ and
- ② For any Borel set B, the spectrum of (1 HS(T, B))T(1 HS(T, B)) is a subset of $\overline{\mathbb{C} \setminus B}$ when $HS(T, B) \neq 1$.

Theorem (DNZ)

T and T^{*} both have the norm convergence property if and only if for every upper-triangular decomposition T = N + Q, Q is quasinilpotent.

Theorem (DNZ)

If T is an operator in a finite von Neumann algebra and ν_T has finite support, then the following are equivalent:

- There exists an upper-triangular decomposition T = N + Q such that Q is quasinilpotent
- For any upper-triangular decomposition T = N + Q, Q is quasinilpotent
- S T has the shifted norm-convergence property.

Guess

If T is an operator in a von Neumann algebra with a trace τ , then the following are equivalent:

- There exists an upper-triangular decomposition T = N + Q such that Q is quasinilpotent
- For any upper-triangular decomposition T = N + Q, Q is quasinilpotent
- T has the shifted norm-convergence property.

Thank you.