NAME (PRINT): ________________________________

I pledge to NOT disclose the content of this exam to anyone (SIGN BELOW):

MATH 116: Introduction to Complex Analysis
Midterm I, Spring 2014

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Rules of the exam

- You have 50 minutes to complete this exam.
- Show your work! – any answer without an explanation will get you zero points.
- Please read the questions carefully; some ask for more than one thing.
- When applicable, BOX the answer.
- Do not forget to write your name.

Good luck!
PROBLEM 1: (25 points) Define each of the terms listed below:

1. The Cauchy Riemann equations
2. a formula for computing the radius of convergence for a power series
3. rectifiable path
4. function \(\gamma : [a, b] \to \mathbb{C} \) of bounded variation
5. Leibniz’s rule
6. Let \(z_2, z_3, z_4 \) be points in \(\mathbb{C}_\infty \). Define the Mobius map \(S : \mathbb{C}_\infty \to \mathbb{C}_\infty \) such that \(S(z_2) = 1 \), \(S(z_3) = 0 \), \(S(z_4) = \infty \).
PROBLEM 2: (25 points) State and prove Morera’s Theorem.
PROBLEM 3: (20 points) State and prove Casorati-Weierstrass Theorem.
PROBLEM 4: (20 points) Solve at your choice ONE of the following problems.

1) Let G be a region and suppose that $f : G \rightarrow \mathbb{C}$ is analytic such that $f(G)$ is a subset of a circle. Show that it is constant.

2) Let f be an entire function and suppose that its range omits a disk $B(a, r)$ with $r > 0$. Show that f is constant.
PROBLEM 5: (10 points) Let $h : \mathbb{C} \to \mathbb{R}$ be a non-constant, harmonic function. Then show that for every $y \in \mathbb{R}$ the preimage $f^{-1}(\{y\})$ is a nonempty, closed, unbounded subset of \mathbb{C}.
BEAUTIFUL PROBLEM : (5 points) Assume that T is a Mobius transformation which flips to given distinct points in the plane. What can you say about T?