Higher Order Noncommutative Functions

Leonard C. Stevenson

Drexel University

NonCommutative Analysis, June 2016

The Noncommutative Space

Let

- \mathcal{R} be a commutative ring with identity,
- \mathcal{M} be an \mathcal{R}-module, and
- $\mathcal{M}^{n \times n}$ be the module of all $n \times n$ matrices with entries from \mathcal{M}.

Define the noncommutative space over \mathcal{M} to be

$$
\mathcal{M}_{n c}:=\bigsqcup_{n=1}^{\infty} \mathcal{M}^{n \times n}
$$

Matrix Operations

The following operations on matrices over \mathcal{M} and \mathcal{R} can be defined:
(1) Sum: For $X, Y \in \mathcal{M}^{n \times n}$,

$$
X+Y:=\left[x_{i j}+y_{i j}\right]_{i, j=1, \ldots, n} \in \mathcal{M}^{n \times n}
$$

(2) Direct Sum: For $X \in \mathcal{M}^{n \times n}$ and $Y \in \mathcal{M}^{m \times m}$

$$
X \bigoplus Y:=\left[\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right] \in M^{(m+n) \times(m+n)}
$$

(0) Ring Actions: For $X \in \mathcal{M}^{p \times q}, T \in \mathcal{R}^{r \times p}$ and $S \in \mathcal{R}^{q \times b}$,

$$
T X:=\left[\sum_{k=1}^{p} t_{i k} x_{k j}\right]_{i=1, \ldots . r}^{j=1, \ldots q}
$$

$$
X S=\left[\sum_{k=1}^{q} x_{i k} s_{k j}\right]_{i=1, \ldots p}^{j=1, \ldots b}
$$

Matrix Operations

(1) Kronecker Product: For $S \in \mathcal{R}^{p \times q}$ and $T \in \mathcal{R}^{n \times m}$, we define $S \otimes T=\left[s_{i j} T\right]_{i=1, \ldots, p}^{j=1, \ldots, q} \in \mathcal{R}^{n p \times m q}$.
(6) Generalized Matrix Product: For \mathcal{R}-modules $\mathcal{N}_{1}, \mathcal{N}_{2}, Z^{1} \in \mathcal{N}_{1}^{n_{0} \times n_{1}}$, $Z^{2} \in \mathcal{N}_{2}^{n_{1} \times n_{2}}$, integers s_{1}, s_{2} such that $n_{1}=s_{1} m_{1}$ and $n_{2}=s_{2} m_{2}$ and the tensor product $\mathcal{N}_{1}^{s_{0} \times s_{1}} \otimes \mathcal{N}_{2}^{s_{1} \times s_{2}}$,

$$
Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} Z^{2}:=\left[\left(Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} Z^{2}\right)_{\alpha_{0}, \alpha_{2}}\right]_{\alpha_{0}=1, \ldots, m_{0}}^{\alpha_{2}=1, \ldots, m_{2}}
$$

Where,

$$
\left(Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} Z^{2}\right)_{\alpha_{0}, \alpha_{2}}=\sum_{\alpha_{1}=1}^{m_{1}} Z_{\alpha_{0}, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, \alpha_{2}}^{2}
$$

Noncommutative Sets

For $\Omega \subseteq \mathcal{M}_{n c}$

- $\Omega_{n}:=\Omega \cap \mathcal{M}^{n \times n}$.
- Ω is a noncommutative set (nc set) if

$$
X \in \Omega_{n}, Y \in \Omega_{m} \Longrightarrow X \oplus Y \in \Omega_{n+m}
$$

- Ω is right admissible if

$$
\begin{array}{rl}
X \in \Omega_{n}, Y \in \Omega_{m}, Z & Z \in \mathcal{M}^{n \times m} \Longrightarrow
\end{array} \quad \exists r \in \operatorname{GI}(1, \mathcal{R}) \text { s.t. }\left[\begin{array}{cc}
X & r Z \\
0 & Y
\end{array}\right] \in \Omega_{n+m}
$$

The Similarity Envelope

Define,

$$
\tilde{\Omega}:=\left\{S X S^{-1} \mid X \in \Omega_{n}, S \in \mathrm{Gl}(n, \mathcal{R}), n \in \mathbb{N}\right\}
$$

to be the similarity envelope of Ω.
Proposition
If $\Omega \subseteq \mathcal{M}_{n c}$ is a right admissible nc set, then so is its similarity envelope $\tilde{\Omega}$.
Moreover, for any $\tilde{X} \in \tilde{\Omega}_{n}, \tilde{Y} \in \tilde{\Omega}_{m}$ and $Z \in \mathcal{M}^{n \times m}$, one has

$$
\left[\begin{array}{cc}
\tilde{X} & Z \\
0 & \tilde{Y}
\end{array}\right] \in \tilde{\Omega}_{n+m}
$$

Definition of Noncommutative Function

A function $f: \Omega \rightarrow \mathcal{N}_{n c}$ s.t. $f\left(\Omega_{n}\right) \subseteq \mathcal{N}^{n \times n}$ for $n=1,2, \ldots$ is called a noncommutative function if

- f respects direct sums:

$$
X \in \Omega_{n}, Y \in \Omega_{m} \Longrightarrow f(X \bigoplus Y)=f(X) \oplus f(Y)
$$

- f respects similarities:

$$
X \in \Omega_{n}, S \in \operatorname{GI}(n, \mathcal{R}) \text { s.t. } S X S^{-1} \in \Omega_{n} \Longrightarrow f\left(S X S^{-1}\right)=S f(X) S^{-1}
$$

Examples of Noncommutative Functions

Consider the matrix polynomial $f(X)=X^{2}$. In this case,

$$
\begin{aligned}
& f\left(\left[\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right]\right)=\left[\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right]\left[\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right] \\
&=\left[\begin{array}{cc}
X^{2} & 0 \\
0 & Y^{2}
\end{array}\right]=\left[\begin{array}{cc}
f(X) & 0 \\
0 & f(Y)
\end{array}\right] \\
& f\left(S X S^{-1}\right)=S X\left(S^{-1} S\right) X S^{-1}=S X^{2} S^{-1}=S f(X) S^{-1}
\end{aligned}
$$

Examples of Noncommutative Functions

(1) All polynomials and rational expressions in d matrices over \mathcal{R}.
(2) Formal power series of matrices over \mathcal{R}.
(0) Let $I: \mathcal{M} \rightarrow \mathcal{N}$ be a linear mapping. Define $L: \mathcal{M}^{n \times n} \rightarrow \mathcal{N}^{n \times n}$ by

$$
L\left(\left[x_{i j}\right]_{i, j=1, \cdots, n}\right)=\left[I\left(x_{i j}\right)\right]_{i, j=1, \cdots, n}
$$

Then, $L: \mathcal{M}_{n c} \rightarrow \mathcal{N}_{n c}$ is a noncommutative function.

The Difference-Differential Operator

Let f be a nc function on a nc set Ω. For any $X \in \Omega_{n}, Y \in \Omega_{m}$ and any $Z \in \mathcal{M}^{n \times m}$ such that $\left[\begin{array}{cc}X & Z \\ 0 & Y\end{array}\right] \in \Omega_{n+m}$, define $\Delta_{R} f(X, Y)(Z)$ by

$$
f\left(\left[\begin{array}{cc}
X & Z \\
0 & Y
\end{array}\right]\right)=\left[\begin{array}{cc}
f(X) & \Delta_{R} f(X, Y)(Z) \\
0 & f(Y)
\end{array}\right]
$$

Proposition

Take any nc function f on a right admissible, nc set Ω. Then, $\Delta_{R} f(X, Y)(Z)$, can be extended to a function linear in Z on the \mathcal{R}-module $\mathcal{M}^{n \times m}$.

Difference-Differential Operator Examples

(1) If $f(X)=X^{2}$, then

$$
f\left(\left[\begin{array}{ll}
X & Z \\
0 & Y
\end{array}\right]\right)=\left[\begin{array}{ll}
X & Z \\
0 & Y
\end{array}\right]\left[\begin{array}{ll}
X & Z \\
0 & Y
\end{array}\right]=\left[\begin{array}{cc}
X^{2} & X Z+Z Y \\
0 & Y^{2}
\end{array}\right]
$$

Thus, $\Delta_{R} f(X, Y)(Z)=X Z+Z Y$.

Difference-Differential Operator Examples

(2) If f is a polynomial of the form

$$
\sum_{i=1}^{n} a_{i} X^{i},
$$

then

$$
\Delta_{R} f(X, Y)(Z)=\sum_{i=1}^{n} a_{i} X^{i-1} Z Y^{n-i}
$$

(3) For the extension of the linear function defined above

$$
\Delta_{R} L(X, Y)(Z)=L(Z) .
$$

Difference Formula

Theorem
Let $f: \Omega \rightarrow \mathcal{N}_{n c}$ be an nc function where Ω is a right admissible nc set. Then, for all $n, m \in \mathbb{N}$, all $X \in \Omega_{n}, Y \in \Omega_{m}$ and $S \in \mathcal{R}^{n \times m}$ we have

$$
S f(Y)-f(X) S=\Delta_{R} f(X, Y)(S Y-X S)
$$

and, in the special case that $n=m$ and $S=I_{n}$, we get,

$$
\Delta_{R} f(Y, X)(Y-X)=f(Y)-f(X)=\Delta_{R} f(X, Y)(Y-X)
$$

Difference Formula

For our function $f(X)=X^{2}$, the difference formula looks like,

$$
\begin{aligned}
S f(Y) & -f(X) S=S Y^{2}-X^{2} S=X S Y-X^{2} S+S Y^{2}-X S Y \\
& =X(S Y-X S)+(S Y-X S) Y=\Delta_{R} f(X, Y)(S Y-X S)
\end{aligned}
$$

Or in the case that $S=I$ and X and Y have the same size,

$$
\begin{aligned}
f(Y)-f(X) & =Y^{2}-X^{2}=X Y-X^{2}+Y^{2}-X Y \\
& =X(Y-X)+(Y-X) Y=\Delta_{R} f(X, Y)(Y-X)
\end{aligned}
$$

Properties of the Difference-Differential Operator

The Difference-Differential Operator has the following properties with respect to direct sums,

$$
\begin{gathered}
\Delta_{R} f\left(X^{\prime} \oplus X^{\prime \prime}, Y\right)\left(\left[\begin{array}{c}
Z^{\prime} \\
Z^{\prime \prime}
\end{array}\right]\right)=\left[\begin{array}{c}
\Delta_{R} f\left(X^{\prime}, Y\right)\left(Z^{\prime}\right) \\
\Delta_{R} f\left(X^{\prime \prime}, Y\right)\left(Z^{\prime \prime}\right)
\end{array}\right] \\
\Delta_{R} f\left(X, Y^{\prime} \oplus Y^{\prime \prime}\right)\left(\left[\begin{array}{ll}
Z^{\prime} & Z^{\prime \prime}
\end{array}\right]\right)=\left[\begin{array}{ll}
\Delta_{R} f\left(X, Y^{\prime}\right)\left(Z^{\prime}\right) & \left.\Delta_{R} f\left(X, Y^{\prime \prime}\right)\left(Z^{\prime \prime}\right)\right]
\end{array}\right] .
\end{gathered}
$$

Properties of the Difference-Differential Operator

For our function $\Delta_{R} f(X, Y)(Z)=X Z+Z Y$,

$$
\begin{aligned}
\Delta_{R} f\left(X^{\prime} \oplus X^{\prime \prime}, Y\right)\left(\left[\begin{array}{c}
Z^{\prime} \\
Z^{\prime \prime}
\end{array}\right]\right) & =\left[\begin{array}{cc}
X^{\prime} & 0 \\
0 & X^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
Z^{\prime} \\
Z^{\prime \prime}
\end{array}\right]+\left[\begin{array}{l}
Z^{\prime} \\
Z^{\prime \prime}
\end{array}\right] Y \\
& =\left[\begin{array}{c}
X^{\prime} Z^{\prime} \\
X^{\prime \prime} Z^{\prime \prime}
\end{array}\right]+\left[\begin{array}{c}
Z^{\prime} Y \\
Z^{\prime \prime} Y
\end{array}\right] \\
& =\left[\begin{array}{c}
X^{\prime} Z^{\prime}+Z^{\prime} Y \\
X^{\prime \prime} Z^{\prime \prime}+Z^{\prime \prime} Y
\end{array}\right] \\
& =\left[\begin{array}{c}
\Delta_{R} f\left(X^{\prime}, Y\right)\left(Z^{\prime}\right) \\
\Delta_{R} f\left(X^{\prime \prime}, Y\right)\left(Z^{\prime \prime}\right)
\end{array}\right]
\end{aligned}
$$

Properties of the Difference-Differential Operator

and

$$
\begin{aligned}
\Delta_{R} f\left(X, Y^{\prime} \oplus Y^{\prime \prime}\right) & \left(\left[\begin{array}{ll}
Z^{\prime} & Z^{\prime \prime}
\end{array}\right]\right) \\
& =X\left[\begin{array}{ll}
Z^{\prime} & Z^{\prime \prime}
\end{array}\right]+\left[\begin{array}{ll}
Z^{\prime} & Z^{\prime \prime}
\end{array}\right]\left[\begin{array}{cc}
Y^{\prime} & 0 \\
0 & Y^{\prime \prime}
\end{array}\right] \\
& =\left[\begin{array}{ll}
X Z^{\prime} & X Z^{\prime \prime}
\end{array}\right]+\left[\begin{array}{ll}
Z^{\prime} Y^{\prime} & Z^{\prime \prime} Y^{\prime \prime}
\end{array}\right] \\
& =\left[\begin{array}{ll}
X Z^{\prime}+Z^{\prime} Y^{\prime} & X Z^{\prime \prime}+Z^{\prime \prime} Y^{\prime \prime}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\Delta_{R} f\left(X, Y^{\prime}\right)\left(Z^{\prime}\right) & \Delta_{R} f\left(X, Y^{\prime \prime}\right)\left(Z^{\prime \prime}\right)
\end{array}\right]
\end{aligned}
$$

Properties of the Difference-Differential Operator

The Difference-Differential Operator has the following properties with respect to similarities,

$$
\begin{aligned}
\Delta_{R} f\left(T X T^{-1}, Y\right)(T Z) & =T \Delta_{R} f(X, Y)(Z) \\
\Delta_{R} f\left(X, S Y S^{-1}\right)\left(Z S^{-1}\right) & =\Delta_{R} f(X, Y)(Z) S^{-1}
\end{aligned}
$$

Properties of the Difference-Differential Operator

For our function $\Delta_{R} f(X, Y)(Z)=X Z+Z Y$,

$$
\begin{aligned}
\Delta_{R} f\left(T X T^{-1}\right. & , Y)(T Z) \\
& =\left(T X T^{-1}\right)(T Z)+(T Z) Y \\
& T X Z+T Z Y=T(X Z+Z Y)=T \Delta_{R} f(X, Y)(Z)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta_{R} f\left(X, S Y S^{-1}\right)\left(Z S^{-1}\right)=X\left(Z S^{-1}\right)+\left(Z S^{-1}\right)\left(S Y S^{-1}\right) \\
& \quad=X Z S^{-1}+Z Y S^{-1}=(X Z+Z Y) S^{-1}=\Delta_{R} f(X, Y)(Z) S^{-1}
\end{aligned}
$$

Higher Order NC Functions

A function f for which

$$
f\left(X^{0}, \ldots, X^{k}\right): \mathcal{N}_{1}^{n_{0} \times n_{1}} \times \ldots \times \mathcal{N}_{k}^{n_{k-1} \times n_{k}} \rightarrow \mathcal{N}_{0}^{n_{0} \times n_{k}}
$$

is a k-linear mapping over \mathcal{R} is an nc function of order k if

NC Functions Respect Direct Sums

f respects direct sums:

$$
\begin{align*}
f\left(X^{0^{\prime}} \oplus X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(\left[\begin{array}{c}
Z^{1^{\prime}} \\
Z^{1^{\prime \prime}}
\end{array}\right], Z^{2}, \ldots, Z^{k}\right) \\
=\left[\begin{array}{c}
f\left(X^{0^{0^{\prime}}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime}}, Z^{2}, \ldots, Z^{k}\right) \\
f\left(X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime \prime}}, Z^{2}, \ldots, Z^{k}\right)
\end{array}\right] \tag{1}
\end{align*}
$$

NC Functions Respect Direct Sums

$$
\begin{align*}
& f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime}} \oplus X^{j^{\prime \prime}}, X^{j+1}, \ldots, X^{k}\right) \\
& \left(z^{1}, \ldots, z^{j-1},\left[\begin{array}{cc}
z^{j^{\prime}} & z^{j^{\prime \prime}}
\end{array}\right],\left[\begin{array}{l}
z^{(j+1)^{\prime}} \\
z^{(j+1)^{\prime \prime}}
\end{array}\right], z^{j+2}, \ldots, z^{k}\right) \\
& =f\left(X^{0}, \ldots, x^{j-1}, X^{j^{\prime}}, X^{j+1}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{j-1}, z^{j}, Z^{(j+1)^{\prime}}, z^{j+2}, \ldots, Z^{k}\right) \\
& +f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime \prime}}, X^{(j+1)}, \ldots, X^{k}\right) \\
& \left(Z^{1}, \ldots, z^{j-1}, Z^{j^{\prime \prime}}, Z^{(j+1)^{\prime \prime}}, Z^{(j+2)}, \ldots, Z^{k}\right) \tag{2}
\end{align*}
$$

NC Functions Respect Direct Sums

and

$$
\begin{align*}
& f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime}} \oplus X^{k^{\prime \prime}}\right)\left(Z^{1}, \ldots, Z^{k-1},\left[\begin{array}{ll}
Z^{k^{\prime}} & Z^{k^{\prime \prime}}
\end{array}\right]\right) \\
& =\operatorname{row}\left[f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime}}\right)\left(Z^{1}, \ldots, Z^{k-1}, Z^{k^{\prime}}\right)\right. \tag{3}\\
& \left.\quad f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime \prime}}\right)\left(Z^{1}, \ldots, Z^{k-1}, Z^{k^{\prime \prime}}\right)\right]
\end{align*}
$$

NC Functions Respect Similarities

- f respects similarities:

$$
\begin{align*}
& f\left(S_{0} X^{0} S_{0}^{-1}, X^{1}, \ldots, X^{k}\right)\left(S_{0} Z^{1}, Z^{2}, \ldots, Z^{k}\right) \\
& \quad=S_{0} f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) \tag{4}\\
& f\left(X^{0}, \ldots, X^{j-1}, S_{j} X^{j} S_{j}^{-1}, X^{j+1}, \ldots, X^{k}\right) \\
& \left(Z^{1}, \ldots, Z^{j-1}, Z^{j} S_{j}^{-1}, S_{j} Z^{j+1}, Z^{j+2}, \ldots, Z^{k}\right) \tag{5}\\
& \quad=f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) \\
& f\left(X^{0}, \ldots, X^{k-1}, S_{k} X^{k} S_{k}^{-1}\right)\left(Z^{1}, Z^{2}, \ldots, Z^{k} S_{k}^{-1}\right) \tag{6}\\
& =
\end{align*} \quad f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) S_{k}^{-1} .
$$

Order of an NC Function

By this definition $\Delta_{R} f(X, Y)(Z)$ is a first order function while f is considered a zero order function. In general, let

$$
\mathcal{T}^{k}\left(\Omega^{(0)}, \ldots, \Omega^{(k)} ; \mathcal{N}_{0, n c}, \ldots, \mathcal{N}_{k, n c}\right)
$$

be the set of all nc functions of order k.

Generalization of Direct Sum

Proposition
Let

$$
X^{j}=\bigoplus_{\alpha_{j}=1}^{m_{j}} X_{\alpha_{j}}^{j}, \quad Z^{j}=\left[Z_{\alpha, \beta}^{j}\right]_{\alpha=1, \ldots, m_{j-1}}^{\beta=1, \ldots, m_{j}}
$$

Then,

$$
f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right)=\left[f^{\alpha, \beta}\right]_{\alpha=1, \ldots, m_{0}}^{\beta=1, \ldots, m_{k}}
$$

where,

$$
f^{\alpha, \beta}=\sum_{\substack{\alpha_{j}=1, \ldots, m_{j} \\ \alpha_{0}=\alpha, \alpha_{k}=\beta}} f\left(X^{0 \alpha_{0}}, \ldots, X^{k \alpha_{k}}\right)\left(Z^{1 \alpha_{0}, \alpha_{1}}, \ldots, Z^{k \alpha_{k-1}, \alpha_{k}}\right)
$$

Generalization of Direct Sum

Consider the function, $f\left(X^{0}, X^{1}, X^{2}\right)\left(Z^{1}, Z^{2}\right)=Z^{1} X^{1} Z^{2}$, we find,

$$
\begin{aligned}
f\left(\left[\begin{array}{ccc}
X_{1}^{0} & & \\
& \ddots & \\
& & X_{m_{0}}^{0}
\end{array}\right],\left[\begin{array}{ccc}
X_{1}^{1} & & \\
& \ddots & \\
& & \left(\left[\begin{array}{ccc}
Z_{11}^{1} & \cdots & Z_{1, m_{1}}^{1} \\
\vdots & \ddots & \vdots \\
Z_{m_{0}, 1}^{1} & \cdots & Z_{m_{0}, m_{1}}^{1}
\end{array}\right],\left[\begin{array}{ccc}
X_{1}^{2} & & \\
& \ddots & \\
& & X_{m_{2}}^{2}
\end{array}\right]\right) \\
Z_{11}^{2} & \cdots & Z_{1, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
Z_{m_{1}, 1}^{2} & \cdots & Z_{m_{1}, m_{2}}^{2}
\end{array}\right]\right)
\end{aligned}
$$

Generalization of Direct Sum

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
Z_{11}^{1} & \cdots & Z_{1, m_{1}}^{1} \\
\vdots & \ddots & \vdots \\
Z_{m_{0}, 1}^{1} & \cdots & Z_{m_{0}, m_{1}}^{1}
\end{array}\right]\left[\begin{array}{cccc}
X_{1}^{1} & & \\
& \ddots & \\
& & X_{m_{1}}^{1}
\end{array}\right]\left[\begin{array}{ccc}
Z_{11}^{2} & \cdots & Z_{1, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
Z_{m_{1}, 1}^{2} & \cdots & Z_{m_{1}, m_{2}}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
Z_{11}^{1} X_{1}^{1} Z_{11}^{2}+\cdots+Z_{1, m_{1}}^{1} X_{m_{1}}^{1} Z_{m_{1}, 1}^{2} & \cdots & Z_{11}^{1} X_{1}^{1} Z_{1, m_{2}}^{2}+\cdots+Z_{1, m_{1}}^{1} X_{m_{1}}^{1} Z_{m_{1}, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
Z_{m_{0}, 1}^{1} X_{1}^{1} Z_{11}^{2}+\cdots+Z_{m_{0}, m_{1}}^{1} X_{m_{1}}^{1} Z_{m_{1}, 1}^{2} \cdots & Z_{m_{0}, 1}^{1} X_{1}^{1} Z_{1, m_{2}}^{2}+\cdots+Z_{m_{0}, m_{1}}^{1} X_{m_{1}}^{1} Z_{m_{1}, m_{2}}^{2}
\end{array}\right]
\end{aligned}
$$

Generalization of Direct Sum

$$
=\left[\begin{array}{ccc}
\sum_{\alpha_{1}=1}^{m_{1}} Z_{1, \alpha_{1}}^{1} X_{\alpha_{1}}^{1} Z_{\alpha_{1}, 1}^{2} & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} Z_{1, \alpha_{1}}^{1} X_{\alpha_{1}}^{1} Z_{\alpha_{1}, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
\sum_{\alpha_{1}=1}^{m_{1}} Z_{m_{0}, \alpha_{1}}^{1} X_{\alpha_{1}}^{1} Z_{\alpha_{1}, 1}^{2} & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} Z_{m_{0}, \alpha_{1}}^{1} X_{\alpha_{1}}^{1} Z_{\alpha_{1}, m_{2}}^{2}
\end{array}\right]
$$

Which is a matrix where each entry has the form,

$$
\sum_{\alpha_{1}=1}^{m_{1}} f\left(X_{\alpha_{0}}^{0}, X_{\alpha_{1}}^{1}, X_{\alpha_{2}}^{2}\right)\left(Z_{\alpha_{0}, \alpha_{1}}^{1}, Z_{\alpha_{1}, \alpha_{2}}^{2}\right)
$$

Generalized Matrix Product

Our k-linear maps,

$$
\left(Z^{1}, \ldots, Z^{k}\right) \mapsto f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right)
$$

can also be written as linear maps on the corresponding tensor product, defined on elementary tensors as,

$$
Z^{1} \otimes \ldots \otimes Z^{k} \mapsto f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1} \otimes \ldots \otimes Z^{k}\right)
$$

Generalized Matrix Product

We recall,

$$
Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} \cdots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k}:=\left[\left(Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} \cdots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k}\right)_{\alpha_{0}, \alpha_{k}}\right]_{\alpha_{0}=1, \ldots, m_{0}}^{\alpha_{k}=1, \ldots, m_{k}},
$$

where,

$$
\left(Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} \ldots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k}\right)_{\alpha_{0}, \alpha_{k}}=\sum_{\substack{\alpha_{j}=1 \\ j=1, \ldots, k-1}}^{m_{j}} Z_{\alpha_{0}, \alpha_{1}}^{1} \otimes \ldots \otimes Z_{\alpha_{k-1}, \alpha_{k}}^{k}
$$

Rewriting Direct Sum Rule for Identical Summands

Proposition
Given,

$$
X^{j}=\bigoplus_{\alpha_{j}=1}^{m_{j}} Y^{j}, \text { for } j=0, \ldots, k
$$

we rewrite the function as follows:

$$
f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right)=Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} \cdots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k} f\left(Y^{0}, \ldots, Y^{k}\right),
$$

where $f\left(Y^{0}, \ldots, Y^{k}\right)$ acts entrywise on $Z_{s_{0}, s_{2}}^{1} \odot_{s_{1}} \cdots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k}$.

Rewriting Direct Sum Rule for Identical Summands

For our function $\Delta_{R} f\left(X^{0}, X^{1}, X^{2}\right)\left(Z^{1}, Z^{2}\right)=Z^{1} Z^{2}$, if X^{0}, X^{1} and X^{2} are direct sums of Y^{0}, Y^{1} and Y^{2}, then, as calculated above,

Rewriting Direct Sum Rule for Identical Summands

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
\sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{1, \alpha_{1}}^{1}, Z_{\alpha_{1}, 1}^{2}\right) & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{1, \alpha_{1}}^{1}, Z_{\alpha_{1}, m_{2}}^{2}\right) \\
\vdots & \ddots & \vdots \\
\sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{m_{0}, \alpha_{1}}^{1}, Z_{\alpha_{1}, m_{2}}^{2}\right) & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{m_{0}, \alpha_{1}}^{1}, Z_{\alpha_{1}, m_{2}}^{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{1, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, 1}^{2}\right) & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{1, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2}\right) \\
\vdots & \ddots & \vdots \\
\sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{m_{0}, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2}\right) & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} f\left(Y^{0}, Y^{1}, Y^{2}\right)\left(Z_{m_{0}, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2}\right)
\end{array}\right]
\end{aligned}
$$

Rewriting Direct Sum Rule for Identical Summands

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\sum_{\alpha_{1}=1}^{m_{1}} Z_{1, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, 1}^{2} & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} Z_{1, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
\sum_{\alpha_{1}=1}^{m_{1}} Z_{m_{0}, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2} & \cdots & \sum_{\alpha_{1}=1}^{m_{1}} Z_{m_{0}, \alpha_{1}}^{1} \otimes Z_{\alpha_{1}, m_{2}}^{2}
\end{array}\right] f\left(Y^{0}, Y^{1}, Y^{2}\right) \\
& =\left(\left[\begin{array}{ccc}
Z_{11}^{1} & \cdots & Z_{1, m_{1}}^{1} \\
\vdots & \ddots & \vdots \\
Z_{m_{0}, 1}^{1} & \cdots & Z_{m_{0}, m_{1}}^{1}
\end{array}\right]{ }_{\left.m_{0}, m_{1} \odot_{m_{2}}\left[\begin{array}{ccc}
Z_{11}^{2} & \cdots & Z_{1, m_{2}}^{2} \\
\vdots & \ddots & \vdots \\
Z_{m_{1}, 1}^{2} & \cdots & Z_{m_{1}, m_{2}}^{2}
\end{array}\right]\right) f\left(Y^{0}, Y^{1}, Y^{2}\right)}\right. \\
& =\left(Z^{1}{ }_{m_{0}, m_{1}} \odot_{m_{2}} Z^{2}\right) f\left(Y^{0}, Y^{1}, Y^{2}\right)
\end{aligned}
$$

Higher order Difference-Differential Operators

We extend the difference-differential operator to higher order functions as follows, Proposition

Let $f \in \mathcal{T}^{k}\left(\Omega^{(0)}, \ldots, \Omega^{(k)} ; \mathcal{N}_{0, n c}, \ldots, \mathcal{N}_{k, n c}\right)$,
$f\left(\left[\begin{array}{cc}X^{0^{\prime}} & Z \\ 0 & X^{0^{\prime \prime}}\end{array}\right], X^{1}, \ldots, X^{k}\right)\left(\left[\begin{array}{c}Z^{1^{\prime}} \\ Z^{1^{\prime \prime}}\end{array}\right], Z^{2}, \ldots, Z^{k}\right)$
$=\left[\begin{array}{c}f\left(X^{0^{\prime}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime}}, Z^{2}, \ldots, Z^{k}\right) \\ { }^{+0} \Delta_{R} f\left(X^{0^{\prime}}, X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(Z, Z^{1^{\prime \prime}}, Z^{2} \ldots, Z^{k}\right) \\ f\left(X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime \prime}}, Z^{2}, \ldots, Z^{k}\right)\end{array}\right]$

Higher order Difference-Differential Operators

Proposition

$$
\begin{aligned}
& f\left(X^{0}, \ldots, X^{j-1},\left[\begin{array}{cc}
X^{j^{\prime}} & Z \\
0 & X^{j^{\prime \prime}}
\end{array}\right], X^{j+1}, \ldots, X^{k}\right) \\
& \quad\left(Z^{1}, \ldots, Z^{j-1},\left[\begin{array}{ll}
Z^{j^{\prime}} & Z^{j^{\prime \prime}}
\end{array}\right],\left[\begin{array}{c}
Z^{(j+1)^{\prime}} \\
Z^{(j+1)^{\prime \prime}}
\end{array}\right], Z^{(j+2)}, \ldots, Z^{k}\right) \\
& =f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime}}, X^{j+1}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{(j-1)}, Z^{j^{\prime}}, Z^{(j+1)^{\prime}}, Z^{(j+2)}, \ldots, Z^{k}\right) \\
& +_{j} \Delta_{R} f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime}}, X^{j^{\prime \prime}}, X^{(j+1)}, \ldots, X^{k}\right) \\
& \quad\left(Z^{1}, \ldots, Z^{j-1}, Z^{j^{\prime}}, Z, Z^{(j+1)^{\prime \prime}}, Z^{(j+2)}, \ldots, Z^{k}\right) \\
& +f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime \prime}}, X^{j+1}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{j-1}, Z^{j^{\prime \prime}}, Z^{(j+1)^{\prime \prime}}, Z^{(j+2)}, \ldots, Z^{k}\right)
\end{aligned}
$$

Higher order Difference-Differential Operators

Proposition

$$
\begin{aligned}
& f\left(X^{0}, \ldots, X^{k-1},\left[\begin{array}{cc}
X^{k^{\prime}} & Z \\
0 & X^{k^{\prime \prime}}
\end{array}\right]\right)\left(Z^{1}, \ldots, Z^{k-1},\left[\begin{array}{cc}
Z^{k^{\prime}} & Z^{k^{\prime \prime}}
\end{array}\right]\right) \\
& =\left[f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime}}\right)\left(Z^{1}, \ldots, Z^{k-1}, Z^{k^{\prime}}\right)\right. \text {, } \\
& { }_{k} \Delta_{R} f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime}}, X^{k^{\prime \prime}}\right)\left(Z^{1}, \ldots, Z^{k-1}, Z^{k^{\prime}}, Z\right) \\
& \left.+f\left(X^{0}, \ldots, X^{k-1}, X^{k^{\prime \prime}}\right)\left(Z^{1}, \ldots, Z^{k-1}, Z^{k^{\prime \prime}}\right)\right]
\end{aligned}
$$

Higher order Difference-Differential Operators

As an example, consider the function $f\left(X^{0}, X^{1}, X^{2}\right)\left(Z^{1}, Z^{2}\right)=X^{0} Z^{1} X^{1} Z^{2} X^{2}$. Then,

$$
\begin{aligned}
& f\left(\left[\begin{array}{cc}
X^{0^{\prime}} & Z \\
0 & X^{0^{\prime \prime}}
\end{array}\right], X^{1}, X^{2}\right)\left(\left[\begin{array}{c}
Z^{1^{\prime}} \\
Z^{1^{\prime \prime}}
\end{array}\right], Z^{2}\right)=\left[\begin{array}{cc}
X^{0^{\prime}} & Z \\
0 & X^{0^{\prime \prime}}
\end{array}\right]\left[\begin{array}{c}
Z^{1^{\prime}} \\
Z^{1^{\prime \prime}}
\end{array}\right] X^{1} Z^{2} X^{2} \\
& =\left[\begin{array}{c}
X^{0^{\prime}} Z^{1^{\prime}}+Z Z^{1^{\prime \prime}} \\
X^{0^{\prime \prime}} Z^{1^{\prime \prime}}
\end{array}\right] X^{1} Z^{2} X^{2}=\left[\begin{array}{c}
X^{0^{\prime}} Z^{1^{\prime}} X^{1} Z^{2} X^{2}+Z Z^{1^{\prime \prime}} X^{1} Z^{2} X^{2} \\
X^{0^{\prime \prime}} Z^{1^{\prime \prime}} X^{1} Z^{2} X^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
f\left(X^{0^{\prime}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime}}, Z^{2}, \ldots, Z^{k}\right) \\
+{ }^{+0} \Delta_{R} f\left(X^{0^{\prime}}, X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(Z, Z^{1^{\prime \prime}}, Z^{2} \ldots, Z^{k}\right) \\
f\left(X^{0^{\prime \prime}}, X^{1}, \ldots, X^{k}\right)\left(Z^{1^{\prime \prime}}, Z^{2}, \ldots, Z^{k}\right)
\end{array}\right.
\end{aligned}
$$

Thus, $0^{\Delta_{R}} f\left(X^{0^{\prime}}, X^{0^{\prime \prime}}, X^{1}, X^{2}\right)\left(Z, Z^{1^{\prime \prime}}, Z^{2}\right)=Z Z^{1^{\prime \prime}} X^{1} Z^{2} X^{2}$.

Linearity of the Image of ${ }_{j} \Delta_{R} f$

As for order 0 nc functions,

Proposition

For any nc function f on a right admissible, nc set Ω, ${ }_{j} \Delta_{R} f\left(X^{0}, \ldots, X^{j-1}, X^{j^{\prime}}, X^{j^{\prime \prime}}, X^{(j+1)}, \ldots, X^{k}\right)$, can be extended to a linear function on the \mathcal{R}-module $\mathcal{M}_{j}^{n_{j}^{\prime} \times n_{j}^{\prime \prime}}$.

Difference Formulae for Higher Order NC Functions

Proposition

Let f be an nc function on the nc set $\Omega^{(0)} \times \ldots \times \Omega^{(k)}$, then,

$$
\begin{aligned}
& f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right)-f\left(Y^{0}, \ldots, Y^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) \\
& =\sum_{\alpha_{1}=0}^{k} \alpha_{1} \Delta_{R} f\left(Y^{0}, \ldots, Y^{\alpha_{1}}, X^{\alpha_{1}}, \ldots, X^{k}\right) \\
& \quad\left(Z^{1}, \ldots, Z^{\alpha_{1}}, X^{\alpha_{1}}-Y^{\alpha_{1}}, Z^{\alpha_{1}+1}, \ldots, Z^{k}\right),
\end{aligned}
$$

Difference Formulae for Higher Order NC Functions

Applying this to the function, $f\left(X^{0}, X^{1}\right)\left(Z^{1}\right)=X^{0} Z^{1} X^{1}$,

$$
\begin{aligned}
\left(X^{0}-Y^{0}\right) Z^{1} X^{1}+Y^{0} Z^{1}\left(X^{1}-Y^{1}\right) & =X^{0} Z^{1} X^{1}-Y^{0} Z^{1} X^{1}+Y^{0} Z^{1} X^{1}-Y^{0} Z^{1} Y^{1} \\
& =X^{0} Z^{1} X^{1}-Y^{0} Z^{1} Y^{1} \\
& =f\left(X^{0}, X^{1}\right)\left(Z^{1}\right)-f\left(Y^{0}, Y^{1}\right)\left(Z^{1}\right)
\end{aligned}
$$

Iterated Difference-Differential Operators

Recall that we found that for

$$
\begin{gathered}
f\left(X^{0}, X^{1}, X^{2}\right)\left(Z^{1}, Z^{2}\right)=X^{0} Z^{1} X^{1} Z^{2} X^{2} \\
{ }_{0} \Delta_{R} f\left(X^{0^{\prime}}, X^{0^{\prime \prime}}, X^{1}, X^{2}\right)\left(Z, Z^{1^{\prime \prime}}, Z^{2}\right)=Z Z^{1^{\prime \prime}} X^{1} Z^{2} X^{2} .
\end{gathered}
$$

If we want to find ${ }_{1} \Delta_{R 0} \Delta_{R} f$, should we take the derivative in the new position 1 or in the old position 1 ?
Since $X^{0 \prime \prime}$ does not appear in the expression and X^{1} does, it is clear that these will give different results.

Iterated Difference-Differential Operators

We define,

$$
{ }_{j} \Delta_{R}^{\prime}:={ }_{j} \Delta_{R} \ldots j \Delta_{R} \quad \text { for } \quad 0 \leq j \leq k
$$

Thus, ${ }^{j} \Delta^{\prime}{ }_{R}$ is calculated iteratively using 2×2 block upper triangular matrices. Alternatively, it can be calculated in a single step.

Iterated Difference-Differential Operators

A necessary condition for integrability,
Theorem
Let $g \in \mathcal{T}^{k}\left(\Omega^{(0)}, \ldots, \Omega^{(k)} ; \mathcal{N}_{0, n c}, \ldots, \mathcal{N}_{k, n c}\right)$ with $\Omega^{(j)}$ a right admissible nc set for all $j=0, \ldots, k$. Let $f={ }_{j} \Delta_{R}^{\prime} g$. Then, ${ }_{j} \Delta_{R} f={ }_{m} \Delta_{R} f$ for $m=j, \ldots, j+l$.

Iterated Difference-Differential Operators

Coming back to our question from earlier, we now see that to find ${ }_{1} \Delta_{R 0} \Delta_{R} f$, we should take the derivative in the old position 1.

With this in mind, we define some new notation.

New Notation

Applying ${ }_{j} \Delta_{R}$ to $f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right)$, we now write

$$
{ }_{j} \Delta_{R} f\left(X^{0}, \ldots, X^{j-1}, \vec{X}^{j}, X^{j+1}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{j-1}, \vec{Z}^{j}, Z_{2}^{j+1}, \ldots, Z^{k}\right)
$$

where

$$
\vec{X}^{j}=\left(X_{0}^{j}, X_{1}^{j}\right)
$$

and

$$
\vec{Z}^{j}=\left(Z^{j, 0}, Z^{j, 1}\right)
$$

If all entries of \vec{X}^{j} are the same, X^{j}, denote it as $\widehat{X^{j}}$.

Taylor-Taylor Formula for Higher NC Functions

Theorem

For $f \in \mathcal{T}^{k}\left(\Omega^{(0)} \times \ldots \times \Omega^{(k)} ; \mathcal{N}_{0, n c}, \ldots, \mathcal{N}_{k, n c}\right), \alpha_{q}$ the last nonzero α_{j} and an arbitrary integer N,

$$
\begin{aligned}
& f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) \\
& =\sum_{p=0}^{N} \sum_{\alpha_{0}+\ldots+\alpha_{k}=p}{ }_{k} \Delta_{R}^{\alpha_{k}} \ldots 0 \Delta_{R}^{\alpha_{0}} f\left(\widehat{Y^{0}}, \ldots, \widehat{Y^{k}}\right) \\
& \quad\left(\widehat{\left(X^{0}-Y^{0}\right.}, Z^{1}, \widehat{X^{1}-Y^{1}}, \ldots, Z^{k}, \widehat{X^{k}-Y^{k}}\right) \\
& +\sum_{\alpha_{0}+\ldots+\alpha_{k}=N+1}{ }_{q} \Delta_{R}^{\alpha_{q}} \ldots 0 \Delta_{R}^{\alpha_{0}} f\left(\widehat{Y^{0}}, \ldots, \widehat{Y^{q-1}}, \overrightarrow{Y^{q}}, X^{q+1}, \ldots, X^{k}\right) \\
& \\
& \quad\left(\widehat{X^{0}-Y^{0}}, Z^{1}, \widehat{X^{1}-Y^{1}}, \ldots, Z^{k}, \widehat{X^{k}-Y^{k}}\right),
\end{aligned}
$$

Alternate Taylor-Taylor Formula

It is also possible to write the Taylor formula centered at $\left(Y^{0}, \ldots, Y^{k}\right) \in \Omega_{s_{0}}^{(0)} \times \ldots \times \Omega_{s_{k}}^{(k)}$ where for all $j n_{j}=m_{j} s_{j}$ for some positive integers m_{j}.

Theorem
Let $f \in \mathcal{T}^{k}\left(\Omega^{(0)} \times \ldots \times \Omega^{(k)} ; \mathcal{N}_{0, n c}, \ldots, \mathcal{N}_{k, n c}\right)$, for each $N \in \mathbb{N}, \alpha_{q}$ the last nonzero α_{j} and using the difference formula for higher order nc functions,

Alternate Taylor-Taylor Formula

Theorem

$$
\begin{aligned}
& f\left(X^{0}, \ldots, X^{k}\right)\left(Z^{1}, \ldots, Z^{k}\right) \\
& =\sum_{l=0}^{N} \sum_{\alpha_{0}+\cdots+\alpha_{k}=N}\left(\left(X^{0}-\bigoplus_{\beta_{0}=1}^{m_{0}} Y^{0}\right)^{\odot_{s_{0}} \alpha_{0}}{ }_{s_{0}, s_{1} \odot_{s_{0}}} Z_{s_{0}, s_{2} \odot_{s_{1}}^{0}}\left(X^{1}-\bigoplus_{\beta_{1}=1}^{m_{1}} Y^{1}\right)^{\odot_{s_{1}} \alpha_{1}}{ }_{s_{1}, s_{2} \odot_{s_{1}} \cdots}\right. \\
& \left.\cdots{ }_{s_{k-2}, s_{k}} \odot_{s_{k-1}} Z_{s_{k-1}, s_{k} \odot_{s_{k}}}\left(X^{k}-\bigoplus_{\beta_{k}=1}^{m_{k}} Y^{k}\right)^{\Theta_{s_{k}} \alpha_{k}}\right) \\
& { }_{k} \Delta_{R}^{\alpha_{k} \cdots 0_{0} \Delta_{R}^{\alpha_{0}} f\left(\widehat{Y^{0}}, \ldots, \widehat{Y^{k}}\right)}
\end{aligned}
$$

Alternate Taylor-Taylor Formula

Theorem

$$
\begin{aligned}
& +\sum_{\alpha_{0}+\ldots+\alpha_{k}=N+1}\left(\left(\left(X^{0}-\bigoplus_{\beta_{0}=1}^{m_{0}} Y^{0}\right)^{\odot_{s_{0}} \alpha_{0}}{ }_{s_{0}, s_{1}} \odot_{s_{0}} Z_{s_{0}, s_{2}}^{0} \odot_{s_{1}}\left(X^{1}-\bigoplus_{\beta_{1}=1}^{m_{1}} Y^{1}\right)_{s_{1}, s_{2}} \odot_{s_{1}} \ldots\right.\right. \\
& \left.\cdots s_{q-2}, s_{q} \odot_{s_{q-1}} Z^{q} s_{q-1}, s_{q} \odot_{s_{q}}\left(X^{q}-\bigoplus_{\beta_{q}=1}^{m_{q}} Y^{q}\right)^{\odot_{s_{q}} \alpha_{q}}\right) \\
& \left.s_{q-1}, s_{q+1} \odot_{s_{q}} Z^{q+1} s_{q}, s_{q+2} \odot_{s_{q+1}} \cdots s_{k-2}, s_{k} \odot_{s_{k-1}} Z^{k}\right) \\
& { }_{k} \Delta_{R}^{\alpha_{k}} \ldots 0 \Delta_{R}^{\alpha_{0}} f\left(\widehat{Y^{0}}, \ldots, \widehat{Y^{q-1}}, \overrightarrow{Y q}, X^{q+1}, \ldots, X^{k}\right)
\end{aligned}
$$

Current Research

I am currently studying the integration of nc functions in joint work with Dr. Victor Vinnikov and Dr. Dmitry Kaliushny-Verbotvetskyi. We have shown that as long as the modules involved are over rings of characteristic 0 , then the necessary condition that ${ }_{j} \Delta_{R} f={ }_{m} \Delta_{R} f$ for $m=j, \ldots, j+l$, established above is also sufficient.

We have partial results in the case of finite characteristic.

Bibliography

J. Agler and J. E. McCarthy. Global holomorphic functions in several noncommuting variables. Preprint, arXiv:1305.1636.
J. Agler and N. J. Young. Symmetric functions of two noncommuting variables. Preprint, arXiv:1307.1588.

䍰 I. Gelfand, S. Gelfand, V. Retakh, and R. L. Wilson. Quasideterminants. Adv. Math. 193(1):56-141, 2005.
D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Foundations of Free Noncommutative Function Theory. Mathematical Surveys and Monographs, Vol. 199. American Mathematical Society, Providence, R. I., 2014.

Bibliography

圊 D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Noncommutative rational functions, their difference-differential calculus and realizations. Multidimens. Syst. Signal Process. 23 (2012), no. 1-2, 49-77.
D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Noncommutative rational functions, their difference-differential calculus and realizations. Multidimens. Syst. Signal Process. 23 (2012), no. 1-2, 49-77.
D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Foundations of Free Noncommutative Function Theory. Mathematical Surveys and Monographs, Vol. 199. American Mathematical Society, Providence, R. I., 2014.

Bibliography

围 P．S．Muhly and B．Solel．Hardy Algebras，W^{*}－correspondances and interpolation theory．Math．Ann．330：353－415， 2004.

围 P．S．Muhly and B．Solel．Progress in noncommutative function theory．Sci． China Math． 54 （2011），no．11，2275－2294．

P．S．Muhly and B．Solel．Schur class operator functions and automorphisms of Hardy algebras．Doc．Math．13：365－411， 2008.

嗇 P．S．Muhly and B．Solel．Tensorial function theory：From Berezin transforms to Taylor＇s Taylor series and back．Integral Equations Operator Theory 76 （2013），no．4，463－508．

Bibliography

葍 J．L．Taylor．A general framework for a multi－operator functional calculus． Advances in Math．，9：183－252， 1972.

圊 J．L．Taylor．Functions of several noncommuting variables．Bull．Amer．Math． Soc．，79：1－34， 1973.

國 D．V．Voiculescu，K．J．Dykema，and A．Nica．Free random variables．A noncommutative probability approach to free products with applications to random matrices，operator algebras and harmonic analysis on free groups． CRM Monograph Series，1．American Mathematical Society，Providence，RI， 1992．vi +70 pp ．

