Sampling in de Branges Spaces of Entire Functions

Eric Weber

with Sa'ud al-Sa'di

Iowa State University

University of Iowa Workshop in Noncommutative Analysis June 4-5, 2016 PW_{π} consists of f which are:

- entire;
- square integrable

$$\int_{\mathbb{R}}|f(t)|^{2}dt<\infty;$$

() exponential type π , i.e. for all $\epsilon > 0$,

$$|f(z)| \leq C_{\epsilon} e^{(\pi+\epsilon)|z|}.$$

Theorem (Paley-Wiener, ~1930)

If $f \in \mathcal{PW}_{\pi}$, then there exists a $g \in L^2[-1/2,1/2]$ such that

$$f(z) = \int_{-1/2}^{1/2} g(t) e^{-2\pi i t z} dt.$$

Colloquially,

$$PW_{\pi} = L^2[-\frac{1}{2},\frac{1}{2}].$$

Theorem (Whitaker 1929, Shannon 1949, Kotelnikov 1933)

If $f \in PW_{\pi}$, then for all $x \in \mathbb{R}$,

$$f(x) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(\pi(x-n))}{\pi(x-n)}.$$

The convergence takes place both uniformly as well as in the mean.

Note:

$$f(n) = \int_{-1/2}^{1/2} g(t) e^{-2\pi i n t} dt$$
$$= \langle g(t), e^{2\pi i n t} \rangle$$
$$= \left\langle f(x), \frac{\sin(\pi(x-n))}{\pi(x-n)} \right\rangle$$

.

Definition

A sequence $\{\lambda_n\}_{n\in\mathbb{Z}}\subset\mathbb{R}$ is a sampling sequence for PW_{π} if there exist A, B > 0 such that for all $f \in PW_{\pi}$,

$$A||f||^2 \le \sum_n |f(\lambda_n)|^2 \le B||f||^2.$$

Question: which sequences are sampling sequences?

Reconstruction: if $\{\lambda_n\}$ is a sampling sequence, then there exists $\{h_n\} \subset PW_{\pi}$ such that

$$f(x) = \sum_{n} f(\lambda_{n}) h_{n}(x).$$

Definition

A sequence $\{\lambda_n\}_{n\in\mathbb{Z}}\subset\mathbb{R}$ is an interpolating sequence for PW_{π} if for every $(c_n)\in\ell^2(\mathbb{Z})$ there exists an $f\in PW_{\pi}$ such that $f(\lambda_n)=c_n$, and $\|f\|\simeq\|(c_n)\|$.

Duffin and Schaeffer, A Class of Non-Harmonic Fourier Series, 1952

Definition

For a Hilbert space H, a sequence $\{v_n\} \subset H$ is a frame if there exist A, B > 0 such that for all $v \in H$,

$$A\|v\|^2 \leq \sum_n |\langle v, v_n \rangle|^2 \leq B\|v\|^2.$$

For PW_{π} , $\{\lambda_n\}_n$ is a sampling sequence if and only if

$$\left\{\frac{\sin(\pi(x-\lambda_n))}{\pi(x-\lambda_n)}\right\}_n$$

is a frame.

Definition

For a sequence $\{\lambda_n\} \subset \mathbb{R}$, the lower and upper Beurling density are given by:

$$D_{-}(\{\lambda_{n}\}) = \liminf_{r \to \infty} \inf_{x \in \mathbb{R}} \frac{\#(\{\lambda_{n}\} \cap (x - r, x + r))}{2r},$$
$$D_{+}(\{\lambda_{n}\}) = \limsup_{r \to \infty} \sup_{x \in \mathbb{R}} \frac{\#(\{\lambda_{n}\} \cap (x - r, x + r))}{2r}.$$

Theorem (Landau, 1967)

- If $\{\lambda_n\}$ is a sampling sequence for PW_{π} , then $1 \le D_-(\{\lambda_n\}) \le D_+(\{\lambda_n\}) < \infty$.
- ② If 1 < D_−({ λ_n }) ≤ D₊({ λ_n }) < ∞, then { λ_n } is a sampling sequence for PW_{π} .
- **3** If $\{\lambda_n\}$ is an interpolating sequence for PW_{π} , then $D_+(\{\lambda_n\}) \leq 1$.
- If $D_+({\lambda_n}) < 1$, then ${\lambda_n}$ is an interpolating sequence for PW_{π} .

- Interpolating sequences can also be characterized by the Carleson criterion.
- Complete interpolating sequences are characterized by the Hruschév-Nikolskii-Pavlov theorem.

Theorem (Landau, 1967)

- If $\{\lambda_n\}$ is a sampling sequence for PW_{π} , then $1 \le D_-(\{\lambda_n\}) \le D_+(\{\lambda_n\}) < \infty$.
- If $1 < D_{-}(\{\lambda_n\}) \le D_{+}(\{\lambda_n\}) < \infty$, then $\{\lambda_n\}$ is a sampling sequence for PW_{π} .
- **③** If $\{\lambda_n\}$ is an interpolating sequence for PW_{π} , then $D_+(\{\lambda_n\}) \leq 1$.
- If $D_+(\{\lambda_n\}) < 1$, then $\{\lambda_n\}$ is an interpolating sequence for PW_{π} .
 - Interpolating sequences can also be characterized by the Carleson criterion.
 - Complete interpolating sequences are characterized by the Hruschév-Nikolskii-Pavlov theorem.

Theorem (Ortega-Cerdá and Seip 2002)

A sequence $\{\lambda_n\}$ is a sampling sequence for PW_{π} if and only if there exist entire functions E, F such that

- for all $z \in UHP$, $|E(\overline{z})| < |E(z)|$ and $|F(\overline{z})| < |F(z)|$;
- **3** $\{\lambda_n\}$ is the zero sequence of $EF + E^*F^*$.

- E and F are Hermite-Biehler class, \mathcal{HB} ;
- \mathfrak{G} $\mathcal{H}(E)$ is the de Branges space generated by E;

For $E \in \mathcal{HB}$, define

$$\mathcal{K}_{E}(w,z) = rac{\overline{E(w)}E(z) - E(\overline{w})E^{*}(z)}{2\pi i(\overline{w}-z)}.$$

This is a positive matrix (Moore-Aronszajn) and so generates a RKHS: $\mathcal{H}(E)$.

 $\mathcal{H}(E)$ consists of all entire functions f that satisfy:

$$\|f\|_E^2:=\int_{\mathbb{R}}\frac{|f(t)|^2}{|E(t)|^2}dt<\infty,$$

2 for all $z \in \mathbb{C}$,

 $|f(z)| \leq K_E(z,z) \|f\|_E.$

Example: $E(z) = e^{-i\pi z}$:

$$K_E(w,z) = \frac{\sin \pi (z - \bar{w})}{\pi (z - \bar{w})}$$

Thus, $\mathcal{H}(e^{-i\pi z}) = PW_{\pi}$, both as sets, and as Hilbert spaces.

For *E*, we define $\varphi : \mathbb{R} \to \mathbb{R}$ such that $x \in \mathbb{R}$,

$$|E(x)| = e^{i\varphi(x)}E(x).$$

The function φ is C^1 , unique up to additive constant, and

$$\varphi'(x) = \frac{\pi K(x, x)}{|E(x)|^2} \ge 0$$

so is increasing. Example: for $E(z) = e^{-i\pi z}$, $\varphi(x) = \pi x$. Sequences that satisfy the condition

$$\varphi(\lambda_n) = \pi n + \alpha$$

for some α correspond to zeros of K_E .

Example: $E(z) = e^{-i\pi z}$, then $\{\lambda_n\} = \{n + \alpha\}$ for some $\alpha \in [0, 1]$.

These are the zeros of the translations of the sinc function, and also correspond to the frequencies of orthogonal exponentials on [-1/2, 1/2].

Under suitable conditions, for $f \in \mathcal{H}(E)$, $f(z) = \sum_{n \in \mathbb{Z}} f(\gamma_n) \frac{K(\gamma_n, z)}{\|K(\gamma_n, \cdot)\|_F^2}$.

Theorem (de Branges, 1960)

Let $\mathcal{H}(E)$ be a de Branges space with phase function $\varphi(x)$, and let $\alpha \in \mathbb{R}$. If $\Gamma = \{\gamma_n\}_{n \in \mathbb{Z}}$ is a sequence of real numbers, such that $\varphi(\gamma_n) = \alpha + \pi n$, $n \in \mathbb{Z}$, then the functions $\{K(\gamma_n, z)\}_{n \in \mathbb{Z}}$ form an orthogonal set in $\mathcal{H}(E)$. If, in addition, $e^{i\alpha}E(z) - e^{-i\alpha}E^*(z) \notin \mathcal{H}(E)$, then $\{\frac{K(\gamma_n, z)}{\|K(\gamma_n, z)\|}\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $\mathcal{H}(E)$. Moreover, for every $f(z) \in \mathcal{H}(E)$,

$$f(z) = \sum_{n \in \mathbb{Z}} f(\gamma_n) \frac{K(\gamma_n, z)}{\|K(\gamma_n, .)\|_E^2}.$$
(1)

Homogeneous Approximation Property

- Ramanathan-Steger (1994)
- Gröchenig-Razafinjatovo (1998)
- Heil-Kutyniok (2002)

Theorem (al-Sa'di and W)

Let $\mathcal{H}(E)$ be a de Branges space such that the phase function of E(z) satisfies $0 < \delta \leq \varphi'(x)$ for all $x \in \mathbb{R}$. Let $\{\mu_n\}_{n \in \mathbb{Z}} \subset \mathbb{R}$ be a separated sequence such that $\{k_{\mu_n}(z)\}_{n \in \mathbb{Z}}$ is a frame in $\mathcal{H}(E)$. Then given $\epsilon > 0$ there exists $R = R(\epsilon) > 0$ such that for all $y \in \mathbb{R}$ and all r > 0

$$\sup_{|x-y|\leq r} \left\| k_x(.) - Q_{y,r+R} k_x(.) \right\| < \epsilon,$$
(2)

where $k_x(z) = \frac{K(x,z)}{\|K(x,.)\|}$, and the supremum is taken over $x \in \mathbb{R}$.

 $Q_{y,r+R}$ is the projection onto the span of $\{k_{\mu_n}: |\mu_n - y| \le r + R\}$.

Theorem (al-Sa'di and W)

Let $\mathcal{H}(E)$ be a de Branges space, and the corresponding phase function of E satisfies $0 < \delta \leq \varphi'(x)$ for all $x \in \mathbb{R}$. Suppose that $\mathcal{M} = \{\mu_n\}, \Gamma = \{\gamma_n\} \subseteq \mathbb{R}$ are two separated sequences, such that $\{k_{\mu_n}(z)\}_{n \in \mathbb{Z}}$ is a frame in $\mathcal{H}(E)$, and $\{k_{\gamma_n}(z)\}_{n \in \mathbb{Z}}$ is a Riesz basis for a closed subspace of $\mathcal{H}(E)$. Then for every $\epsilon > 0$, there exists $R = R(\epsilon) > 0$, such that for all r > 0 and $y \in \mathbb{R}$, we have

$$(1-\epsilon)$$
 $\sharp (\Gamma \cap [y-r,y+r)) \leq \sharp (\mathcal{M} \cap [y-r-R,y+r+R)).$

Therefore,

$$D^{-}(\Gamma) \leq D^{-}(\mathcal{M}), \text{ and } D^{+}(\Gamma) \leq D^{+}(\mathcal{M})$$

Theorem

Let $E \in \mathcal{HB}$, with phase function satisfying $0 < \delta \leq \varphi'(x)$, for all $x \in \mathbb{R}$. If $\mathcal{M} = \{\mu_n\}_{n \in \mathbb{Z}}$ is a uniformly separated sampling sequence in $\mathcal{H}(E)$, then $D^-(\mathcal{M}) \geq \frac{\delta}{\pi}$.

Theorem

Let $E \in \mathcal{HB}$, with phase function satisfying $0 < \delta \leq \varphi'(x) \leq M < \infty$, for all $x \in \mathbb{R}$. If $\Gamma = \{\gamma_n\}_{n \in \mathbb{Z}}$ is a uniformly separated interpolating sequence in $\mathcal{H}(E)$, then $D^+(\Gamma) \leq \frac{M}{\pi}$.

We recover the Landau inequalities on PW_{π} .

In general, density criteria are not valid in de Branges spaces (Lyubarskii and Seip, 2002).

Theorem (al-Sa'di and W; Baranov)

Let $E_0 \in \mathcal{HB}$. If $\{\lambda_n\}$ is a separated sampling sequence for $\mathcal{H}(E_o)$, then there exists two functions E, F such that

- **(3)** $\{\lambda_n\}$ constitutes the zero sequence of $EF + E^*F^*$.

Note: still only necessary condition.

Theorem (Naimark \sim 1930)

Let \mathcal{E} be regular, positive, B(H)-valued measure on Ω . Then there exists a Hilbert space K, a bounded linear operator $V : H \to K$, and a regular, self-adjoint, spectral, (i.e. PVM) B(K)-valued measure \mathcal{F} on Ω such that for all measurable sets S

$$\mathcal{E}(S) = V^* \mathcal{F}(S) V.$$

Theorem (Han and Larson 2000)

If $\{v_n\} \subset H$ is a frame, then there exists a Hilbert space K and a frame $\{w_n\} \subset K$ such that $\{v_n \oplus w_n\} \subset H \oplus K$ is a Riesz basis.

The converse was observed in Aldroubi (1994).

We define $\mathcal{I} : \mathcal{H}(E) \to \mathcal{H}(EF) : f \mapsto fF$; \mathcal{I} is a linear isometry.

Lemma

The mapping $\mathcal{J} : \mathcal{H}(F) \to \mathcal{H}(EF)$ defined by $g \mapsto gE^*$ is a linear isometry. Consequently, for every $g_1, g_2 \in \mathcal{H}(F)$,

$$\langle g_1 E^*, g_2 E^* \rangle_{EF} = \langle g_1, g_2 \rangle_F. \tag{3}$$

Lemma

The images of \mathcal{I} and \mathcal{J} are orthogonal in $\mathcal{H}(EF)$. Consequently,

 $\mathcal{H}(EF) = F\mathcal{H}(E) \oplus E^*\mathcal{H}(F).$

Lemma

The following equation holds for the kernel K_{EF} :

$$\mathcal{K}_{EF}(w,z) = \overline{F(w)}[\mathcal{I}(\mathcal{K}_{E}(w,\cdot))](z) + E(\overline{w})[\mathcal{J}(\mathcal{K}_{F}(w,\cdot))](z). \tag{4}$$

Recall: if $\{\lambda_n\}$ is a sampling sequence in $\mathcal{H}(E_0)$, then there exists $E, F \in \mathcal{HB}$ satisfying conditions 1-3.

Theorem (al-Sa'di and Weber)

Suppose that $\{\lambda_n\}$ is a sampling sequence for $\mathcal{H}(E_0)$. Suppose $E, F \in \mathcal{HB}$ is given by the Necessary Condition Theorem. Then $\mathcal{H}(E_0)$ can be embedded into $\mathcal{H}(EF)$ such that the frame $\{K_{E_0}(\lambda_n, \cdot)\}$ is embedded into the Riesz basis

$$\left\{\frac{\overline{F(\lambda_n)}[\mathcal{I}(K_{E_0}(\lambda_n,\cdot))](z)}{\sqrt{K_{EF}(\lambda_n,\lambda_n)}} \oplus \frac{E(\lambda_n)[\mathcal{J}(K_{F}(\lambda_n,\cdot))](z)}{\sqrt{K_{EF}(\lambda_n,\lambda_n)}}\right\}_n$$

Theorem (al-Sa'di and Weber)

Suppose that $E_0, E, F \in \mathcal{HB}$ have no real roots such that $\mathcal{H}(E_0) \simeq \mathcal{H}(E)$, and $\varphi'_F \lesssim \varphi'_E$. Suppose $\{\lambda_n\}$ satisfies the equation $\varphi_{EF}(\lambda_n) = n\pi + \alpha$ for some $\alpha \in [0, \pi)$. Then the sequence $\{\lambda_n\}$ is a normalized sampling sequence for $\mathcal{H}(E_0)$.

Idea: the kernel functions $\{K_{EF}(\lambda_n, \cdot)\}$ is a Riesz basis in the big space, so the projection onto $\mathcal{H}(E_0)$ is a frame, hence corresponds to a sampling sequence (though we need to normalize).

Corollary

Assume the conditions of the previous theorem, if $\{\lambda_n\}$ is the zero set of $EF + E^*F^*$, then $\{\lambda_n\}$ is a normalized sampling set for $\mathcal{H}(E_0)$.

Corollary

Assume the conditions of the previous theorem; assume also that $K_{E_0}(x,x) \simeq 1$. Then the zero set of $EF + E^*F^*$ is a (non-normalized) sampling sequence for $\mathcal{H}(E_0)$.

Corollary

Suppose E, F and $\{\lambda_n\}$ satisfy the hypotheses of the previous theorem, with $f \in \mathcal{H}(E)$ and $g \in \mathcal{H}(F)$. Given the samples $\{f(\lambda_n)\}$ and $\{g(\lambda_n)\}$, f and g can be reconstructed from the multiplexed samples as follows:

$$f(z) = \sum_{n} (f(\lambda_n)F(\lambda_n) + g(\lambda_n)E^*(\lambda_n)) \frac{\overline{F(\lambda_n)}K_E(\lambda_n, z)}{K_{EF}(\lambda_n, \lambda_n)}$$
(5)
$$g(z) = \sum_{n} (f(\lambda_n)F(\lambda_n) + g(\lambda_n)E^*(\lambda_n)) \frac{E(\lambda_n)K_F(\lambda_n, z)}{K_{EF}(\lambda_n, \lambda_n)}.$$
(6)

The End Thank you!