Obstructions to lifting cocycles on groupoids and the associated C^* -algebras

Marius Ionescu joint with Alex Kumjian

Workshop on Noncommutative Analysis 2016, University of Iowa

United States Naval Academy

* E * * E *

Groupoids

We regard a groupoid Γ as a small category with inverses.

- The object set of Γ is identified with the distinguished subset of units $\Gamma^0.$
- The range and source maps are denoted by $r, s : \Gamma \to \Gamma^0$.
- Composition is defined on the set of composable pairs

$$\Gamma^2 := \{(x, y) \in \Gamma \times \Gamma : s(x) = r(y)\};$$

• The inverse map $x \mapsto x^{-1}$ satisfies $r(x) = xx^{-1}$, $s(x) = x^{-1}x$.

• For $u \in \Gamma^0$, write $\Gamma^u = r^{-1}(u)$ and $\Gamma_u = s^{-1}(u)$.

Example: Transformation group groupoid

Example

Given a group action $H \curvearrowright X$ we form a groupoid $\Gamma := H \times X$ with $\Gamma^0 = \{e\} \times X$ (often identified with X) and

$$r(h, x) = (e, hx)$$
 $s(h, x) = (e, x)$
 $(h, x)^{-1} = (h^{-1}, hx)$ $(hk, x) = (h, kx)(k, x)$

- A B A A B A

Locally compact groupoids

Definition

- If Γ has a topology such that all the above maps are continuous, we say Γ is a topological groupoid.
- If in addition s is a local homeomorphism, Γ is said to be *étale*.

Haar systems on locally compact groupoids

Definition

A left Haar system for Γ is a family of measures $\{\lambda^u : u \in \Gamma^0\}$ s.t.

i. supp
$$\lambda^u = \Gamma^u$$
,

ii.
$$u \mapsto \lambda(f)(u) := \int_{\Gamma} f \, d\lambda^u$$
 is continuous for all $f \in C_c(\Gamma)$,

iii.
$$\int_{\Gamma} f(xy) \, d\lambda^{s(x)}(y) = \int_{\Gamma} f(y) \, d\lambda^{r(x)}(y)$$
 for all $x \in \Gamma$, $f \in C_c(\Gamma)$.

If Γ is étale, counting measures on Γ^u constitute a left Haar system. A right Haar system is defined similarly with supp $\lambda_{\mu} = \Gamma_{\mu}$.

C^* -algebra of a groupoid

Definition

The Haar system provides a convolution operation on $C_c(\Gamma)$:

$$f * g(x) := \int_{\Gamma} f(y)g(y^{-1}x) d\lambda^{r(x)}(y).$$

An involution on $C_c(\Gamma)$ is defined via

$$f^*(x) = \overline{f(x^{-1})}.$$

Completed in the universal C^* -norm we obtain a C^* -algebra $C^*(\Gamma)$.

A B M A B M

Cocycles

- Let Γ be a locally compact Hausdorff groupoid and let G be a locally compact abelian group.
- Let $Z_{\Gamma}(G)$ be the collection of continuous cocycles $\phi: \Gamma \to G$, that is

$$\phi(\gamma_1\gamma_2)=\phi(\gamma_1)+\phi(\gamma_2).$$

• $Z_{\Gamma}(G)$ is an abelian group.

くぼう くほう くほう

Twists

Definition

Let A be an abelian group and Γ a groupoid. A *twist* by A over Γ is a central groupoid extension

$$\Gamma^0 \times A \xrightarrow{j} \Sigma \xrightarrow{\pi} \Gamma,$$

where $\Sigma^0 = \Gamma^0$, *j* is injective, π is surjective, and $j(r(\sigma), a)\sigma = \sigma j(s(\sigma), a)$ for all $\sigma \in \Sigma$ and $a \in A$.

Twists

Definition

Let A be an abelian group and Γ a groupoid. A *twist* by A over Γ is a central groupoid extension

$$\Gamma^0 \times A \xrightarrow{j} \Sigma \xrightarrow{\pi} \Gamma,$$

where $\Sigma^0 = \Gamma^0$, *j* is injective, π is surjective, and $j(r(\sigma), a)\sigma = \sigma j(s(\sigma), a)$ for all $\sigma \in \Sigma$ and $a \in A$.

Example

The *semi-direct* product of Γ and A, $\Gamma \times A$, is a twist of Γ by A called the *trivial twist*.

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

過き イヨト イヨト

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

Fact

If $f \in \text{Hom}_{\Gamma}(A, B)$ and Σ is a twist by A, then there is a unique twist f_*B by B and a twist morphism $f_* : \Sigma \to f_*\Sigma$ which is compatible with f.

< 回 ト < 三 ト < 三 ト

The group of twists

Definition

Let $T_{\Gamma}(A)$ be the collection of proper isomorphism classes of twists by A.

Fact

If $f \in \text{Hom}_{\Gamma}(A, B)$ and Σ is a twist by A, then there is a unique twist f_*B by B and a twist morphism $f_* : \Sigma \to f_*\Sigma$ which is compatible with f.

Fact

 $T_{\Gamma}(A)$ is an abelian group under the operation

$$[\Sigma] + [\Sigma'] = \nabla^{\mathcal{A}}_* [\Sigma *_{\Gamma} \Sigma'],$$

where $\nabla^{A} : A \oplus A \to A$ is $\nabla^{A}(a, a') = a + a'$.

Obstruction to lifting a cocycle

Example

- Let $p: B \rightarrow C$ be a homomorphism of abelian groups.
- Let $\phi \in Z_{\Gamma}(C)$.
- Define

$$\Sigma_{\phi} = \{(\gamma, b) \in \mathsf{\Gamma} imes B \, : \, \phi(\gamma) = p(b)\}.$$

3

• • = • • = •

Obstruction to lifting a cocycle

Example

- Let $p: B \rightarrow C$ be a homomorphism of abelian groups.
- Let $\phi \in Z_{\Gamma}(C)$.
- Define

$$\Sigma_{\phi} = \{(\gamma, b) \in \Gamma \times B : \phi(\gamma) = p(b)\}.$$

Lemma

1
$$\Sigma_{\phi}$$
 is a twist of Γ by $A := \ker p$.

- **2** Σ_{ϕ} is trivial if and only if there is $\tilde{\phi} \in Z_{\Gamma}(B)$ such that $\phi = p_* \tilde{\phi}$.
- **o** If Γ is étale and A is discrete then Σ_{ϕ} is étale.

Exact sequences

Lemma

lf

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$$

is a short exact sequence of abelian groups, then there is an exact sequence

$$0 \to Z_{\Gamma}(A) \xrightarrow{i_*} Z_{\Gamma}(B) \xrightarrow{p_*} Z_{\Gamma}(C) \xrightarrow{\delta} T_{\Gamma}(A),$$

where $\delta(\phi) := [\Sigma_{\phi}]$ for $\phi \in Z_{\Gamma}(C)$

4 3 4 3 4

Properties of
$$C^*(\Sigma_{\phi})$$

Theorem

Assume that Γ is étale and A is discrete. Let $\phi \in Z_{\Gamma}(C)$. For each $t \in \hat{B}$ one can define a *-homomorphism $\pi_t : C_c(\Sigma_{\phi}) \to C_c(\Gamma)$ by

$$\pi_t(f)(\gamma) = \sum_{\phi(\gamma) = p(b)} f(\gamma, b) \langle t, b \rangle$$

with the following properties

where $\alpha^{\phi} : \hat{\mathcal{C}} \to \operatorname{Aut} \mathcal{C}^*(\Gamma)$ is defined via $\alpha^{\phi}_t(f)(\gamma) = \langle t, \phi(\gamma) \rangle f(\gamma)$.

・ロン ・四と ・ヨン ・ヨン

Main Theorem

Theorem

There is an injective *-homomorphism $\pi : C^*(\Sigma_{\phi}) \to C^b(\hat{B}, C^*(\Gamma))$ such that

- for all $t \in \hat{B}$, $f \in C_c(\Sigma_{\phi})$, $\pi(f)(t) = \pi_t(f)$
- 2 for all $t \in \hat{B}$, $s \in \hat{C}$, and $f \in C^*(\Sigma_{\phi})$, $\pi(f)(s+t) = \alpha_s^{\phi}(\pi(f)(t))$.

Moreover, π induces an isomorphism between $C^*(\Sigma_{\phi})$ and $\operatorname{Ind}_{\hat{\mathcal{C}}}^{\hat{\mathcal{B}}}(C^*(\Gamma), \alpha^{\phi}).$

Main Theorem

Theorem

There is an injective *-homomorphism $\pi : C^*(\Sigma_{\phi}) \to C^b(\hat{B}, C^*(\Gamma))$ such that

• for all
$$t \in \hat{B}$$
, $f \in C_c(\Sigma_\phi)$, $\pi(f)(t) = \pi_t(f)$

2 for all $t \in \hat{B}$, $s \in \hat{C}$, and $f \in C^*(\Sigma_{\phi})$, $\pi(f)(s+t) = \alpha_s^{\phi}(\pi(f)(t))$.

Moreover, π induces an isomorphism between $C^*(\Sigma_{\phi})$ and $\operatorname{Ind}_{\hat{\mathcal{C}}}^{\hat{\mathcal{B}}}(C^*(\Gamma), \alpha^{\phi}).$

Definition

If H is a closed subgroup of a locally compact group G and (A, H, α) is a dynamical system, the *induced algebra* is

$$\operatorname{Ind}_{H}^{G}(A, \alpha) = \{ f \in C^{b}(G, A) : f(sh) = \alpha_{h}^{-1}(f(s)) \\ \text{and } sH \mapsto \|f(s)\| \in C_{0}(G/H) \}.$$

An Example

Consider the short exact sequence

$$0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0.$$

If $\phi \in Z_{\Gamma}(\mathbb{T})$ then

$$\Sigma_{\phi} = \{(\gamma, t) \in \mathsf{\Gamma} imes \mathbb{R} \, : \, \phi(\gamma) = e^{2\pi i t}\}$$

Then $C^*(\Sigma_{\phi})$ is *-isomorphic to the mapping torus

$$M_{\alpha^{\phi}} = \{ f : [0,1] \to C^*(\Gamma) : f(1) = \alpha^{\phi}(f(0)) \}.$$

3

★□→ ★ 国 → ★ 国 →