Contractive determinantal representations of stable polynomials on a matrix polyball

Dmitry Kaliuzhnyi-Verbovetskyi ${ }^{1}$
(Drexel University, Philadelphia, PA)

Iowa City, June 4-5, 2016

Let $\mathcal{D} \subset \mathbb{C}^{d}$ be a domain.

Let $\mathcal{D} \subset \mathbb{C}^{d}$ be a domain. A polynomial $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ is called \mathcal{D}-stable if it has no zeros in \mathcal{D},

Let $\mathcal{D} \subset \mathbb{C}^{d}$ be a domain. A polynomial $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ is called \mathcal{D}-stable if it has no zeros in \mathcal{D}, and strongly \mathcal{D}-stable if it has no zeros in $\overline{\mathcal{D}}$.

Let $\mathcal{D} \subset \mathbb{C}^{d}$ be a domain. A polynomial $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ is called \mathcal{D}-stable if it has no zeros in \mathcal{D}, and strongly \mathcal{D}-stable if it has no zeros in $\overline{\mathcal{D}}$.
$d=1$: If $p(0)=1$, then

$$
p=\left(1-a_{1} z\right) \cdots\left(1-a_{n} z\right)=\operatorname{det}(I-K z)
$$

where $a_{i}=1 / z_{i}, i=1, \ldots, n$, the zeros z_{i} of p are counted according to their multiplicities, $K=\operatorname{diag}\left[a_{1}, \ldots, a_{n}\right]$, and $n=\operatorname{deg} p$.

Let $\mathcal{D} \subset \mathbb{C}^{d}$ be a domain. A polynomial $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ is called \mathcal{D}-stable if it has no zeros in \mathcal{D}, and strongly \mathcal{D}-stable if it has no zeros in $\overline{\mathcal{D}}$.
$d=1$: If $p(0)=1$, then

$$
p=\left(1-a_{1} z\right) \cdots\left(1-a_{n} z\right)=\operatorname{det}(I-K z)
$$

where $a_{i}=1 / z_{i}, i=1, \ldots, n$, the zeros z_{i} of p are counted according to their multiplicities, $K=\operatorname{diag}\left[a_{1}, \ldots, a_{n}\right]$, and $n=\operatorname{deg} p$.
If \mathcal{D} is the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, then p is \mathbb{D}-stable (resp., strongly \mathbb{D}-stable) iff $\|K\| \leq 1$ (resp., $\|K\|<1$).
$d=2: p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ is \mathbb{D}^{2}-stable (resp., strongly \mathbb{D}^{2}-stable) and $p(0)=1$ iff

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=z_{1} I_{n_{1}} \oplus z_{2} I_{n_{2}},
$$

where $n=\left(n_{1}, n_{2}\right), n_{r}=\operatorname{deg}_{r} p, r=1,2, K \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].
$d=2: p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ is \mathbb{D}^{2}-stable (resp., strongly \mathbb{D}^{2}-stable) and $p(0)=1$ iff

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=z_{1} I_{n_{1}} \oplus z_{2} I_{n_{2}},
$$

where $n=\left(n_{1}, n_{2}\right), n_{r}=\operatorname{deg}_{r} p, r=1,2, K \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].
$d>2$: Let $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ be \mathbb{D}^{d}-stable (resp., strongly
\mathbb{D}^{d}-stable) and $p(0)=1$. Question: Is it always possible to write

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{d} z_{r} I_{n_{r}},
$$

where $n=\left(n_{1}, \ldots, n_{d}\right), n_{r}=\operatorname{deg}_{r} p, r=1, \ldots, d, K \in \mathbb{C}^{|n| \times|n|}$, $|n|=n_{1}+\cdots+n_{d}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$)?
$d=2: p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ is \mathbb{D}^{2}-stable (resp., strongly \mathbb{D}^{2}-stable) and $p(0)=1$ iff

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=z_{1} I_{n_{1}} \oplus z_{2} I_{n_{2}}
$$

where $n=\left(n_{1}, n_{2}\right), n_{r}=\operatorname{deg}_{r} p, r=1,2, K \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].
$d>2$: Let $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ be \mathbb{D}^{d}-stable (resp., strongly
\mathbb{D}^{d}-stable) and $p(0)=1$. Question: Is it always possible to write

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{d} z_{r} I_{n_{r}},
$$

where $n=\left(n_{1}, \ldots, n_{d}\right), n_{r}=\operatorname{deg}_{r} p, r=1, \ldots, d, K \in \mathbb{C}^{|n| \times|n|}$, $|n|=n_{1}+\cdots+n_{d}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$)?
Answer: YES in some special cases; e.g., when p is linear,
$d=2: p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ is \mathbb{D}^{2}-stable (resp., strongly \mathbb{D}^{2}-stable) and $p(0)=1$ iff

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=z_{1} I_{n_{1}} \oplus z_{2} I_{n_{2}}
$$

where $n=\left(n_{1}, n_{2}\right), n_{r}=\operatorname{deg}_{r} p, r=1,2, K \in \mathbb{C}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].
$d>2$: Let $p \in \mathbb{C}\left[z_{1}, \ldots, z_{d}\right]$ be \mathbb{D}^{d}-stable (resp., strongly
\mathbb{D}^{d}-stable) and $p(0)=1$. Question: Is it always possible to write

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{d} z_{r} I_{n_{r}},
$$

where $n=\left(n_{1}, \ldots, n_{d}\right), n_{r}=\operatorname{deg}_{r} p, r=1, \ldots, d, K \in \mathbb{C}^{|n| \times|n|}$, $|n|=n_{1}+\cdots+n_{d}$, and $\|K\| \leq 1$ (resp., $\|K\|<1$)?
Answer: YES in some special cases; e.g., when p is linear, NO in general [Grinshpan, K-V, Woerdeman, 2013].

Relax.

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?

Answer: YES in the strongly stable case and for more general domains!

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?
Answer: YES in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$
\begin{aligned}
\mathcal{B}:= & \mathbb{B}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{B}^{\ell_{k} \times m_{k}} \\
=\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in\right. & \mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}} \\
& \left.:\left\|Z^{(r)}\right\|<1, r=1, \ldots, k\right\} .
\end{aligned}
$$

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?
Answer: YES in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$
\begin{aligned}
& \mathcal{B}:= \mathbb{B}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{B}^{\ell_{k} \times m_{k}} \\
&=\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in \mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}}\right. \\
&\left.:\left\|Z^{(r)}\right\|<1, r=1, \ldots, k\right\} .
\end{aligned}
$$

Here the d variables are matrix entries $z_{i j}^{(r)}$, and $d=\sum_{r=1}^{k} \ell_{r} m_{r}$. Important special cases:

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?
Answer: YES in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$
\begin{aligned}
& \mathcal{B}:= \mathbb{B}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{B}^{\ell_{k} \times m_{k}} \\
&=\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in \mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}}\right. \\
&\left.:\left\|Z^{(r)}\right\|<1, r=1, \ldots, k\right\} .
\end{aligned}
$$

Here the d variables are matrix entries $z_{i j}^{(r)}$, and $d=\sum_{r=1}^{k} \ell_{r} m_{r}$. Important special cases:

- $k=d, \ell_{r}=m_{r}=1, r=1, \ldots, d: \mathcal{B}=\mathbb{D}^{d}$ (unit polydisk).

Relax. Question: Is it always possible with $n_{r} \geq \operatorname{deg}_{r} p$, $r=1, \ldots, d$?
Answer: YES in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$
\begin{aligned}
\mathcal{B}:= & \mathbb{B}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{B}^{\ell_{k} \times m_{k}} \\
=\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in\right. & \mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}} \\
& \left.:\left\|Z^{(r)}\right\|<1, r=1, \ldots, k\right\} .
\end{aligned}
$$

Here the d variables are matrix entries $z_{i j}^{(r)}$, and $d=\sum_{r=1}^{k} \ell_{r} m_{r}$. Important special cases:

- $k=d, \ell_{r}=m_{r}=1, r=1, \ldots, d: \mathcal{B}=\mathbb{D}^{d}$ (unit polydisk).
- $k=1, d=\ell m, \mathcal{B}=\mathbb{B}^{\ell \times m}$ (matrix unit ball a.k.a. Cartan's domain of type I). In particular, if $\ell=1$, then

$$
\mathcal{B}=\mathbb{B}^{d}=\left\{z \in \mathbb{C}^{d}: \sum_{i=1}^{d}\left|z_{i}\right|^{2}<1\right\} \text { (unit ball). }
$$

Theorem (Main)
Let $p=\mathbb{C}\left[z_{i j}^{(r)}: r=1, \ldots, k, i=1, \ldots, \ell_{r}, j=1, \ldots, m_{r}\right]$, be strongly \mathcal{B}-stable, with $p(0)=1$. Then there exist
$n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ and $K \in \mathbb{C}_{r=1}^{k} m_{r} n_{r} \times \sum_{r=1}^{k} \ell_{r} n_{r},\|K\|<1$, so that

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

Theorem (Main)
Let $p=\mathbb{C}\left[z_{i j}^{(r)}: r=1, \ldots, k, i=1, \ldots, \ell_{r}, j=1, \ldots, m_{r}\right]$, be strongly \mathcal{B}-stable, with $p(0)=1$. Then there exist
$n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ and $K \in \mathbb{C}_{r=1}^{k} m_{r} n_{r} \times \sum_{r=1}^{k} \ell_{r} n_{r},\|K\|<1$, so that

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

Sketch of the proof.

Theorem (Main)
Let $p=\mathbb{C}\left[z_{i j}^{(r)}: r=1, \ldots, k, i=1, \ldots, \ell_{r}, j=1, \ldots, m_{r}\right]$, be strongly \mathcal{B}-stable, with $p(0)=1$. Then there exist
$n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ and $K \in \mathbb{C}_{r=1}^{\sum_{r}^{k}} m_{r} n_{r} \times \sum_{r=1}^{k} \ell_{r} n_{r},\|K\|<1$, so that

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

Sketch of the proof.
Step 1: Matrix-valued Hermitian Positivstellensatz. Let

$$
P(w, z)=\sum_{\lambda, \mu} P_{\lambda \mu} w^{\lambda} z^{\mu} \in \mathbb{C}^{\gamma \times \gamma}[w, z],
$$

where $w=\left(w_{1}, \ldots, w_{d}\right), z=\left(z_{1}, \ldots, z_{d}\right), w^{\lambda}=w_{1}^{\lambda_{1}} \cdots w_{d}^{\lambda_{d}}$, etc.

Theorem (Main)
Let $p=\mathbb{C}\left[z_{i j}^{(r)}: r=1, \ldots, k, i=1, \ldots, \ell_{r}, j=1, \ldots, m_{r}\right]$, be strongly \mathcal{B}-stable, with $p(0)=1$. Then there exist
$n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ and $K \in \mathbb{C}_{r=1}^{k} m_{r} n_{r} \times \sum_{r=1}^{k} \ell_{r} n_{r},\|K\|<1$, so that

$$
p=\operatorname{det}\left(I-K Z_{n}\right), \quad Z_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

Sketch of the proof.
Step 1: Matrix-valued Hermitian Positivstellensatz. Let

$$
P(w, z)=\sum_{\lambda, \mu} P_{\lambda \mu} w^{\lambda} z^{\mu} \in \mathbb{C}^{\gamma \times \gamma}[w, z],
$$

where $w=\left(w_{1}, \ldots, w_{d}\right), z=\left(z_{1}, \ldots, z_{d}\right), w^{\lambda}=w_{1}^{\lambda_{1}} \cdots w_{d}^{\lambda_{d}}$, etc.
Define

$$
P\left(T^{*}, T\right):=\sum_{\lambda, \mu} P_{\lambda \mu} \otimes T^{* \lambda} T^{\mu}
$$

where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space.
where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu}
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu},
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
We will say that $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if
where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu}
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
We will say that $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

$$
\text { 1. } \mathcal{M}_{\gamma}+\mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \gamma \in \mathbb{N} \text {. }
$$

where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu}
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
We will say that $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1. $\mathcal{M}_{\gamma}+\mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \gamma \in \mathbb{N}$.
2. $1 \in \mathcal{M}_{1}$.
where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu}
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
We will say that $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1. $\mathcal{M}_{\gamma}+\mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \gamma \in \mathbb{N}$.
2. $1 \in \mathcal{M}_{1}$.
3. For every $\gamma, \gamma^{\prime} \in \mathbb{N}, P \in \mathcal{M}_{\gamma}$, and $F \in \mathbb{C}^{\gamma \times \gamma^{\prime}}[z]$, one has $F^{*}(w) P(w, z) F(z) \in \mathcal{M}_{\gamma^{\prime}}$.
where $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of commuting bounded operators on a Hilbert space. We denote by $\mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ the vector space over \mathbb{R} consisting of Hermitian polynomials from $\mathbb{C}^{\gamma \times \gamma}[w, z]$ satisfying $P_{\lambda \mu}=P_{\mu \lambda}^{*}$. If

$$
P^{*}(w, z)=\sum_{\lambda, \mu} P_{\mu \lambda}^{*} w^{\lambda} z^{\mu},
$$

then the last property means that $P^{*}(w, z)=P(w, z)$.
We will say that $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1. $\mathcal{M}_{\gamma}+\mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \gamma \in \mathbb{N}$.
2. $1 \in \mathcal{M}_{1}$.
3. For every $\gamma, \gamma^{\prime} \in \mathbb{N}, P \in \mathcal{M}_{\gamma}$, and $F \in \mathbb{C}^{\gamma \times \gamma^{\prime}}[z]$, one has $F^{*}(w) P(w, z) F(z) \in \mathcal{M}_{\gamma^{\prime}}$.

This generalizes the notion of a Hermitian quadratic module over $\mathbb{C}[z]$, where (1)-(3) hold with $\gamma=\gamma^{\prime}=1$ only.

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$;

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].
Lemma
Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].
Lemma
Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:
(i) For every $\gamma \in \mathbb{N}, I_{\gamma}$ is an algebraic interior point of \mathcal{M}_{γ}, i.e., $\mathbb{R} I_{\gamma}+\mathcal{M}_{\gamma}=\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$.

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:
(i) For every $\gamma \in \mathbb{N}, I_{\gamma}$ is an algebraic interior point of \mathcal{M}_{γ}, i.e., $\mathbb{R} I_{\gamma}+\mathcal{M}_{\gamma}=\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$.
(ii) 1 is an algebraic interior point of \mathcal{M}_{1}, i.e.,

$$
\mathbb{R}+\mathcal{M}_{1}=\mathbb{C}[w, z]_{\mathrm{h}} .
$$

Observations

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma^{\prime}} \subseteq \mathcal{M}_{\gamma+\gamma^{\prime}}$.
2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A=A^{*} \geq 0$.
3. For each $\gamma, \mathcal{M}_{\gamma}$ is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:
(i) For every $\gamma \in \mathbb{N}, I_{\gamma}$ is an algebraic interior point of \mathcal{M}_{γ}, i.e., $\mathbb{R} I_{\gamma}+\mathcal{M}_{\gamma}=\mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$.
(ii) 1 is an algebraic interior point of \mathcal{M}_{1}, i.e., $\mathbb{R}+\mathcal{M}_{1}=\mathbb{C}[w, z]_{\mathrm{h}}$.
(iii) For every $i=1, \ldots, d$, one has $-w_{i} z_{i} \in \mathbb{R}+\mathcal{M}_{1}$.

A matrix system $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)-(iii) in the Lemma is called Archimedean.

A matrix system $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)-(iii) in the Lemma is called Archimedean.

Starting with polynomials $P_{j} \in \mathbb{C}^{\gamma_{j} \times \gamma_{j}}[w, z]_{\mathrm{h}}$, we introduce the sets $\mathcal{M}_{\gamma}, \gamma \in \mathbb{N}$, consisting of polynomials $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ for which there exist $H_{j} \in \mathbb{C}^{\gamma_{j}} n_{j} \times \gamma[z]$, for some $n_{j} \in \mathbb{N}, j=0, \ldots, k$, such that

$$
P(w, z)=H_{0}^{*}(w) H_{0}(z)+\sum_{j=1}^{k} H_{j}^{*}(w)\left(P_{j}(w, z) \otimes I_{n_{j}}\right) H_{j}(z) .
$$

Here $\gamma_{0}=1$.

A matrix system $\mathcal{M}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)-(iii) in the Lemma is called Archimedean.

Starting with polynomials $P_{j} \in \mathbb{C}^{\gamma_{j} \times \gamma_{j}}[w, z]_{\mathrm{h}}$, we introduce the sets $\mathcal{M}_{\gamma}, \gamma \in \mathbb{N}$, consisting of polynomials $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]_{\mathrm{h}}$ for which there exist $H_{j} \in \mathbb{C}^{\gamma_{j}} n_{j} \times \gamma[z]$, for some $n_{j} \in \mathbb{N}, j=0, \ldots, k$, such that

$$
P(w, z)=H_{0}^{*}(w) H_{0}(z)+\sum_{j=1}^{k} H_{j}^{*}(w)\left(P_{j}(w, z) \otimes I_{n_{j}}\right) H_{j}(z) .
$$

Here $\gamma_{0}=1$. We also assume that there exists a constant $c>0$ such that $c^{2}-w_{i} z_{i} \in \mathcal{M}_{1}$ for every $i=1, \ldots, d$. Then $\mathcal{M}=\mathcal{M}_{P_{1}, \ldots, P_{k}}=\left\{\mathcal{M}_{\gamma}\right\}_{\gamma \in \mathbb{N}}$ is an Archimedean matrix system of Hermitian quadratic modules generated by P_{1}, \ldots, P_{k}.

The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

Theorem

Under the assumptions above, let $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]$ be such that for every d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ of Hilbert space operators satisfying $P_{j}\left(T^{*}, T\right) \geq 0, j=1, \ldots, k$, we have that $P\left(T^{*}, T\right)>0$. Then $P \in \mathcal{M}_{\gamma}$.

The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

Theorem

Under the assumptions above, let $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]$ be such that for every d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ of Hilbert space operators satisfying $P_{j}\left(T^{*}, T\right) \geq 0, j=1, \ldots, k$, we have that $P\left(T^{*}, T\right)>0$. Then $P \in \mathcal{M}_{\gamma}$.
The proof extends the one from [Helton, Putinar, 2007]. It uses the Minkowski-Eidelheit-Kakutani separation theorem and a special construction of T.

Step 2: Realization. Given $\mathbf{P} \in \mathbb{C}^{\ell \times m}[z], z=\left(z_{1} \ldots, z_{d}\right)$, let

$$
\mathcal{D}_{\mathbf{P}}:=\left\{z \in \mathbb{C}^{d}:\|\mathbf{P}(z)\|<1\right\}
$$

Step 2: Realization. Given $\mathbf{P} \in \mathbb{C}^{\ell \times m}[z], z=\left(z_{1} \ldots, z_{d}\right)$, let

$$
\mathcal{D}_{\mathbf{P}}:=\left\{z \in \mathbb{C}^{d}:\|\mathbf{P}(z)\|<1\right\}
$$

Let $\mathcal{T}_{\mathbf{P}}$ be the set of d-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\|<1$.

Step 2: Realization. Given $\mathbf{P} \in \mathbb{C}^{\ell \times m}[z], z=\left(z_{1} \ldots, z_{d}\right)$, let

$$
\mathcal{D}_{\mathbf{P}}:=\left\{z \in \mathbb{C}^{d}:\|\mathbf{P}(z)\|<1\right\}
$$

Let $\mathcal{T}_{\mathbf{P}}$ be the set of d-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\|<1$.
For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines $F(T)$ by means of Taylor's functional calculus.

Step 2: Realization. Given $\mathbf{P} \in \mathbb{C}^{\ell \times m}[z], z=\left(z_{1} \ldots, z_{d}\right)$, let

$$
\mathcal{D}_{\mathbf{P}}:=\left\{z \in \mathbb{C}^{d}:\|\mathbf{P}(z)\|<1\right\}
$$

Let $\mathcal{T}_{\mathbf{P}}$ be the set of d-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\|<1$.
For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines $F(T)$ by means of Taylor's functional calculus. The associated Agler norm is defined by

$$
\|F\|_{\mathcal{A}, \mathbf{P}}=\sup _{T \in \mathcal{T}_{\mathbf{P}}}\|F(T)\|
$$

Step 2: Realization. Given $\mathbf{P} \in \mathbb{C}^{\ell \times m}[z], z=\left(z_{1} \ldots, z_{d}\right)$, let

$$
\mathcal{D}_{\mathbf{P}}:=\left\{z \in \mathbb{C}^{d}:\|\mathbf{P}(z)\|<1\right\}
$$

Let $\mathcal{T}_{\mathbf{P}}$ be the set of d-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\|<1$.
For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines $F(T)$ by means of Taylor's functional calculus. The associated Agler norm is defined by

$$
\|F\|_{\mathcal{A}, \mathbf{P}}=\sup _{T \in \mathcal{T}_{\mathbf{P}}}\|F(T)\| .
$$

We say that F belongs to the Schur-Agler class $\mathcal{S} \mathcal{A}_{\mathbf{p}}(\mathcal{U}, \mathcal{Y})$ associated with \mathbf{P}, if $F: \mathcal{D}_{\mathbf{P}} \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{Y})$ is holomorphic and $\|F\|_{\mathcal{A}, \mathbf{P}} \leq 1$.

By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004], $F \in \mathcal{S} \mathcal{A}_{\mathbf{p}}(\mathcal{U}, \mathcal{Y})$ iff there exist a Hilbert space \mathcal{X} and a unitary colligation

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]:\left(\mathbb{C}^{m} \otimes \mathcal{X}\right) \oplus \mathcal{U} \rightarrow\left(\mathbb{C}^{\ell} \otimes \mathcal{X}\right) \oplus \mathcal{Y}
$$

such that

$$
F(z)=D+C\left(\mathbf{P}(z) \otimes I_{\mathcal{X}}\right)\left(I-A\left(\mathbf{P}(z) \otimes I_{\mathcal{X}}\right)\right)^{-1} B
$$

By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004], $F \in \mathcal{S} \mathcal{A}_{\mathbf{p}}(\mathcal{U}, \mathcal{Y})$ iff there exist a Hilbert space \mathcal{X} and a unitary colligation

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]:\left(\mathbb{C}^{m} \otimes \mathcal{X}\right) \oplus \mathcal{U} \rightarrow\left(\mathbb{C}^{\ell} \otimes \mathcal{X}\right) \oplus \mathcal{Y}
$$

such that

$$
F(z)=D+C\left(\mathbf{P}(z) \otimes I_{\mathcal{X}}\right)\left(I-A\left(\mathbf{P}(z) \otimes I_{\mathcal{X}}\right)\right)^{-1} B .
$$

This generalizes [Agler, 1990] from the case $\mathbf{P}=\operatorname{diag}\left[z_{1}, \ldots, z_{d}\right]$ $\mathcal{D}_{\mathbf{P}}=\mathbb{D}^{d}$.

Theorem
Let $\mathbf{P}=\bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_{r} \times m_{r}}[z]$ and

$$
P_{r}(w, z)=I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)
$$

satisfy the Archimedean condition.

Theorem
Let $\mathbf{P}=\bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_{r} \times m_{r}}[z]$ and

$$
P_{r}(w, z)=I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)
$$

satisfy the Archimedean condition. Let $F=Q R^{-1}$ be a rational $\alpha \times \beta$ matrix-valued function which is regular on $\overline{\mathcal{D}}_{\mathbf{P}}$ and satisfies $\|F\|_{\mathcal{A}, \mathbf{P}}<1$.

Theorem
Let $\mathbf{P}=\bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_{r} \times m_{r}}[z]$ and

$$
P_{r}(w, z)=I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)
$$

satisfy the Archimedean condition. Let $F=Q R^{-1}$ be a rational $\alpha \times \beta$ matrix-valued function which is regular on $\overline{\mathcal{D}}_{\mathbf{P}}$ and satisfies $\|F\|_{\mathcal{A}, \mathbf{P}}<1$. Then there exist $n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ and a contraction colligation matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ of size $\left(\sum_{r=1}^{k} m_{r} n_{r}+\alpha\right) \times\left(\sum_{r=1}^{k} \ell_{r} n_{r}+\beta\right)$ such that

$$
F=D+C \mathbf{P}_{n}\left(I-A \mathbf{P}_{n}\right)^{-1} B
$$

$$
\mathbf{P}_{n}=\bigoplus_{r=1}^{k}\left(\mathbf{P}^{(r)} \otimes I_{n_{r}}\right)
$$

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$
\begin{aligned}
R^{*}(w) R(z) & -Q^{*}(w) Q(z)=H_{0}^{*}(w) H_{0}(z) \\
& +\sum_{j=1}^{k} H_{j}^{*}(w)\left(\left(I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)\right) \otimes I_{n_{j}}\right) H_{j}(z),
\end{aligned}
$$

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$
\begin{aligned}
R^{*}(w) R(z) & -Q^{*}(w) Q(z)=H_{0}^{*}(w) H_{0}(z) \\
& +\sum_{j=1}^{k} H_{j}^{*}(w)\left(\left(I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)\right) \otimes I_{n_{j}}\right) H_{j}(z),
\end{aligned}
$$

and then

$$
\begin{aligned}
I_{\beta}-F^{*}(w) & F(z)=G_{0}^{*}(w) G_{0}(z) \\
& +\sum_{j=1}^{k} G_{j}^{*}(w)\left(\left(I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)\right) \otimes I_{n_{j}}\right) G_{j}(z)
\end{aligned}
$$

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$
\begin{aligned}
R^{*}(w) R(z) & -Q^{*}(w) Q(z)=H_{0}^{*}(w) H_{0}(z) \\
& +\sum_{j=1}^{k} H_{j}^{*}(w)\left(\left(I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)\right) \otimes I_{n_{j}}\right) H_{j}(z),
\end{aligned}
$$

and then

$$
\begin{aligned}
& I_{\beta}-F^{*}(w) F(z)=G_{0}^{*}(w) G_{0}(z) \\
& \quad+\sum_{j=1}^{k} G_{j}^{*}(w)\left(\left(I_{m_{r}}-\mathbf{P}^{(r) *}(w) \mathbf{P}^{(r)}(z)\right) \otimes I_{n_{j}}\right) G_{j}(z)
\end{aligned}
$$

Then a lurking contraction argument is applied to construct a colligation...

In a special case, when $\mathbf{P}=\mathbf{Z}=\bigoplus_{r=1}^{k} Z^{(r)}$, one has $\mathcal{D}_{\mathbf{P}}=\mathcal{B}$, the Archimedean condition holds, and

$$
F=D+C Z_{n}\left(I-A Z_{n}\right)^{-1} B, \quad \mathbf{Z}_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

In a special case, when $\mathbf{P}=\mathbf{Z}=\bigoplus_{r=1}^{k} Z^{(r)}$, one has $\mathcal{D}_{\mathbf{P}}=\mathcal{B}$, the Archimedean condition holds, and

$$
F=D+C Z_{n}\left(I-A Z_{n}\right)^{-1} B, \quad \mathbf{Z}_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)
$$

Now we are going back to our main theorem...

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 .

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 . Thus the rational function $g=1 / p$ is regular on $\rho \overline{\mathcal{B}}$, and g_{ρ} defined by $g_{\rho}(z)=g(\rho z)$ is regular on $\overline{\mathcal{B}}$.

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 . Thus the rational function $g=1 / p$ is regular on $\rho \overline{\mathcal{B}}$, and g_{ρ} defined by $g_{\rho}(z)=g(\rho z)$ is regular on $\overline{\mathcal{B}}$. It follows that $\left\|g_{\rho}\right\|_{\mathcal{A}, z}<\infty$, and we can find a constant $c>0$ so that $\left\|c g_{\rho}\right\|_{\mathcal{A}, Z}<1$.

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 . Thus the rational function $g=1 / p$ is regular on $\rho \overline{\mathcal{B}}$, and g_{ρ} defined by $g_{\rho}(z)=g(\rho z)$ is regular on $\overline{\mathcal{B}}$. It follows that $\left\|g_{\rho}\right\|_{\mathcal{A}, z}<\infty$, and we can find a constant $c>0$ so that $\left\|c g_{\rho}\right\|_{\mathcal{A}, z}<1$. We can write a contractive realization for $F=c g_{\rho}$:

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 . Thus the rational function $g=1 / p$ is regular on $\rho \overline{\mathcal{B}}$, and g_{ρ} defined by $g_{\rho}(z)=g(\rho z)$ is regular on $\overline{\mathcal{B}}$. It follows that $\left\|g_{\rho}\right\|_{\mathcal{A}, z}<\infty$, and we can find a constant $c>0$ so that $\left\|c g_{\rho}\right\|_{\mathcal{A}, Z}<1$. We can write a contractive realization for $F=c g_{\rho}$:

$$
c g_{\rho}=D+C Z_{n}\left(I-A Z_{n}\right)^{-1} B
$$

Since p is strongly \mathcal{B}-stable, it has no zeros in $\rho \overline{\mathcal{B}}$ for some $\rho>1$ sufficiently close to 1 . Thus the rational function $g=1 / p$ is regular on $\rho \overline{\mathcal{B}}$, and g_{ρ} defined by $g_{\rho}(z)=g(\rho z)$ is regular on $\overline{\mathcal{B}}$. It follows that $\left\|g_{\rho}\right\|_{\mathcal{A}, z}<\infty$, and we can find a constant $c>0$ so that $\left\|c g_{\rho}\right\|_{\mathcal{A}, Z}<1$. We can write a contractive realization for $F=c g_{\rho}$:

$$
c g_{\rho}=D+C Z_{n}\left(I-A Z_{n}\right)^{-1} B
$$

Therefore
$c g=D+C\left(\rho^{-1} Z_{n}\right)\left(I-A\left(\rho^{-1} Z_{n}\right)\right)^{-1} B=D+C^{\prime} Z_{n}\left(I-A^{\prime} Z_{n}\right)^{-1} B$,
where $C^{\prime}=\rho^{-1} C$ and $A^{\prime}=\rho^{-1} A$ are strict contractions, and $\left[\begin{array}{ll}A^{\prime} & B \\ C^{\prime} & D\end{array}\right]$ is a contraction.

Step 3: NC lifting. Next we lift the rational function cg to a nc rational expression using the same realization formula,

$$
\left.R_{0}=D+C^{\prime} z_{n}\left(I-A^{\prime} z_{n}\right)\right)^{-1} B
$$

now with $z_{n}=\bigoplus_{r=1}^{k}\left(z^{(r)} \otimes I_{n_{r}}\right)$ and the entries $z_{i j}^{(r)}$ of matrices $z^{(r)}$ being nc indeterminates, $r=1, \ldots, k, i=1, \ldots, \ell_{r}$, $j=1, \ldots, m_{r}$.

Step 3: NC lifting. Next we lift the rational function cg to a nc rational expression using the same realization formula,

$$
\left.R_{0}=D+C^{\prime} z_{n}\left(I-A^{\prime} z_{n}\right)\right)^{-1} B
$$

now with $z_{n}=\bigoplus_{r=1}^{k}\left(z^{(r)} \otimes I_{n_{r}}\right)$ and the entries $z_{i j}^{(r)}$ of matrices $z^{(r)}$ being nc indeterminates, $r=1, \ldots, k, i=1, \ldots, \ell_{r}$, $j=1, \ldots, m_{r}$. This expression is the transfer function of a dissipative structured noncommutative multidimensional linear system of [Ball, Groenewald, and Malakorn, 2006].

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\left[\begin{array}{ll}A_{\min } & B_{\min } \\ C_{\min } & D_{\min }\end{array}\right]$, i.e., the one with minimal possible $n_{r}=\left(n_{r}\right)_{\min }$, $r=1, \ldots, k$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\left[\begin{array}{ll}A_{\text {min }} & B_{\text {min }} \\ C_{\text {min }} & D_{\text {min }}\end{array}\right]$, i.e., the one with minimal possible $n_{r}=\left(n_{r}\right)_{\min }$, $r=1, \ldots, k$. The colligation matrix is still contractive and such that $\left\|A_{\text {min }}\right\|<1$ and $\left\|C_{\text {min }}\right\|<1$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\left[\begin{array}{ll}A_{\text {min }} & B_{\text {min }} \\ C_{\text {min }} & D_{\text {min }}\end{array}\right]$, i.e., the one with minimal possible $n_{r}=\left(n_{r}\right)_{\min }$, $r=1, \ldots, k$. The colligation matrix is still contractive and such that $\left\|A_{\text {min }}\right\|<1$ and $\left\|C_{\text {min }}\right\|<1$. Moreover, the corresponding transfer function

$$
R_{1}=D_{\min }+C_{\min } z_{n_{\min }}\left(I-A_{\min } z_{n_{\min }}\right)^{-1} B_{\min }
$$

is equivalent to R_{0}.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\left[\begin{array}{ll}A_{\text {min }} & B_{\text {min }} \\ C_{\text {min }} & D_{\text {min }}\end{array}\right]$, i.e., the one with minimal possible $n_{r}=\left(n_{r}\right)_{\text {min }}$, $r=1, \ldots, k$. The colligation matrix is still contractive and such that $\left\|A_{\text {min }}\right\|<1$ and $\left\|C_{\text {min }}\right\|<1$. Moreover, the corresponding transfer function

$$
R_{1}=D_{\min }+C_{\min } z_{n_{\min }}\left(I-A_{\min } z_{n_{\min }}\right)^{-1} B_{\min }
$$

is equivalent to R_{0}. That is, when we replace the variables $z_{i j}^{(r)}$ by $s \times s$ matrices, the values of R_{1} and R_{0} coincide on a Zariski dense set of $\left(\mathbb{C}^{s \times s}\right)^{d}$, for every $s \in \mathbb{N}$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\left[\begin{array}{ll}A_{\text {min }} & B_{\text {min }} \\ C_{\text {min }} & D_{\text {min }}\end{array}\right]$, i.e., the one with minimal possible $n_{r}=\left(n_{r}\right)_{\text {min }}$, $r=1, \ldots, k$. The colligation matrix is still contractive and such that $\left\|A_{\text {min }}\right\|<1$ and $\left\|C_{\text {min }}\right\|<1$. Moreover, the corresponding transfer function

$$
R_{1}=D_{\min }+C_{\min } z_{n_{\min }}\left(I-A_{\min } z_{n_{\min }}\right)^{-1} B_{\min }
$$

is equivalent to R_{0}. That is, when we replace the variables $z_{i j}^{(r)}$ by $s \times s$ matrices, the values of R_{1} and R_{0} coincide on a Zariski dense set of $\left(\mathbb{C}^{s \times s}\right)^{d}$, for every $s \in \mathbb{N}$. In other words, R_{1} and R_{0} represent the same rational nc function \mathfrak{R} [K-V, Vinnikov, 2009].

Step 5: Inversion. Since $p(0)=1$, we have

$$
D_{\min }=D=c g(0)=c / p(0)=c \neq 0 .
$$

Step 5: Inversion. Since $p(0)=1$, we have

$$
D_{\min }=D=c g(0)=c / p(0)=c \neq 0
$$

By [BGM, 2005],

$$
R_{1}^{-1}=D_{\min }^{\times}+C_{\min }^{\times} z_{n}\left(I-A_{\min }^{\times} z_{n}\right)^{-1} B_{\min }^{\times},
$$

where

$$
\left[\begin{array}{cc}
A_{\min }^{\times} & B_{\min }^{\times} \\
C_{\min }^{\times} & D_{\min }^{\times}
\end{array}\right]=\left[\begin{array}{cc}
A_{\min }-B_{\min } D_{\min }^{-1} C_{\min } & B_{\min } D_{\min }^{-1} \\
-D_{\min }^{-1} C_{\min } & D_{\min }^{-1}
\end{array}\right]
$$

Step 5: Inversion. Since $p(0)=1$, we have

$$
D_{\min }=D=c g(0)=c / p(0)=c \neq 0
$$

By [BGM, 2005],

$$
R_{1}^{-1}=D_{\min }^{\times}+C_{\min }^{\times} z_{n}\left(I-A_{\min }^{\times} z_{n}\right)^{-1} B_{\min }^{\times},
$$

where

$$
\left[\begin{array}{cc}
A_{\min }^{\times} & B_{\min }^{\times} \\
C_{\min }^{\times} & D_{\min }^{\times}
\end{array}\right]=\left[\begin{array}{cc}
A_{\min }-B_{\min } D_{\min }^{-1} C_{\min } & B_{\min } D_{\min }^{-1} \\
-D_{\min }^{-1} C_{\min } & D_{\min }^{-1}
\end{array}\right] .
$$

Moreover, the realization of R_{1}^{-1} is minimal.

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense.

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense. We write $R \in \mathfrak{R}$ if R represents a rational nc function \mathfrak{R}.

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense. We write $R \in \mathfrak{R}$ if R represents a rational nc function \mathfrak{R}. We define the domain of \mathfrak{R} as

$$
\operatorname{dom} \Re=\bigcup_{R \in \mathfrak{R}} \operatorname{dom} R .
$$

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense. We write $R \in \mathfrak{R}$ if R represents a rational nc function \mathfrak{R}. We define the domain of \Re as

$$
\operatorname{dom} \mathfrak{R}=\bigcup_{R \in \mathfrak{R}} \operatorname{dom} R .
$$

Theorem
Let \mathfrak{R} be an $\alpha \times \beta$ matrix-valued nc rational function, with a minimal realization

$$
R=D+C z_{n}\left(I-A z_{n}\right)^{-1} B
$$

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense. We write $R \in \mathfrak{R}$ if R represents a rational nc function \mathfrak{R}. We define the domain of \mathfrak{R} as

$$
\operatorname{dom} \mathfrak{R}=\bigcup_{R \in \mathfrak{R}} \operatorname{dom} R .
$$

Theorem
Let \mathfrak{R} be an $\alpha \times \beta$ matrix-valued nc rational function, with a minimal realization

$$
R=D+C z_{n}\left(I-A z_{n}\right)^{-1} B
$$

Then

$$
\operatorname{dom} \Re=\operatorname{dom} R=\operatorname{dom}\left(\left(I-A z_{n}\right)^{-1}\right) .
$$

Step 6: NC singularities theorem. The domain of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, $s=1,2, \ldots$, for which all the matrix inversions in R are well-defined, so that $R(Z)$ makes sense. We write $R \in \mathfrak{R}$ if R represents a rational nc function \mathfrak{R}. We define the domain of \mathfrak{R} as

$$
\operatorname{dom} \mathfrak{R}=\bigcup_{R \in \mathfrak{R}} \operatorname{dom} R .
$$

Theorem
Let \mathfrak{R} be an $\alpha \times \beta$ matrix-valued nc rational function, with a minimal realization

$$
R=D+C z_{n}\left(I-A z_{n}\right)^{-1} B
$$

Then

$$
\operatorname{dom} \Re=\operatorname{dom} R=\operatorname{dom}\left(\left(I-A z_{n}\right)^{-1}\right) .
$$

This generalizes an earlier result $\left[K-V\right.$, Vinnikov, 2009] for \mathbb{B}^{d} to \mathcal{B}.

In other words, the singularity set of \mathfrak{R} is

$$
\begin{aligned}
& \coprod_{s=1}^{\infty}\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in\left(\mathbb{C}^{s \times s}\right)^{\ell_{1} \times m_{1}} \times \cdots \times\left(\mathbb{C}^{s \times s}\right)^{\ell_{k} \times m_{k}}\right. \\
& \left.\cong\left(\mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}}\right) \otimes \mathbb{C}^{s \times s}: \operatorname{det}\left(I-A \odot Z_{n}\right)=0\right\},
\end{aligned}
$$

In other words, the singularity set of \mathfrak{R} is

$$
\begin{aligned}
& \coprod_{s=1}^{\infty}\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in\left(\mathbb{C}^{s \times s}\right)^{\ell_{1} \times m_{1}} \times \cdots \times\left(\mathbb{C}^{s \times s}\right)^{\ell_{k} \times m_{k}}\right. \\
& \left.\cong\left(\mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}}\right) \otimes \mathbb{C}^{s \times s}: \operatorname{det}\left(I-A \odot Z_{n}\right)=0\right\},
\end{aligned}
$$

where $A \odot Z_{n} \in \mathbb{C}^{\sum_{r=1}^{k} m_{r} n_{r} s \times \sum_{r=1}^{k} m_{r} n_{r} s}$ is a block $\sum_{r=1}^{k} m_{r} \times \sum_{r=1}^{k} m_{r}$ matrix with blocks

$$
\left(A \odot Z_{n}\right)_{i j}^{\left(r r^{\prime}\right)}=\sum_{\kappa=1}^{\ell_{r^{\prime}}} A_{i \kappa}^{\left(r r^{\prime}\right)} \otimes Z_{\kappa j}^{\left(r^{\prime}\right)} \in \mathbb{C}^{n_{r} \times n_{r^{\prime}}} \otimes \mathbb{C}^{s \times s} \cong \mathbb{C}^{n_{r} s \times n_{r^{\prime}} s}
$$

$i=1, \ldots, m_{r}, j=1, \ldots, m_{r^{\prime}}$.

Step 7: Back to commuting variables.

Corollary

The variety of singularities of a (commutative) $\alpha \times \beta$ matrix-valued rational function f which can be represented as a restriction of R from Theorem above to scalars $z_{i j}^{(r)}$ (i.e., to the case $s=1$) is given by
$\left\{Z=\left(Z^{(1)}, \ldots, Z^{(k)}\right) \in \mathbb{C}^{\ell_{1} \times m_{1}} \times \cdots \times \mathbb{C}^{\ell_{k} \times m_{k}}: \operatorname{det}\left(I-A Z_{n}\right)=0\right\}$, where $Z_{n}=\bigoplus_{r=1}^{k}\left(Z^{(r)} \otimes I_{n_{r}}\right)$.

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1}

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1} and Corollary to p / c,

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1} and Corollary to p / c, we obtain that the singularity set of the polynomial p / c is

$$
\left\{Z \in \mathbb{C}^{\ell_{r_{1}} \times m_{r_{1}}} \times \cdots \times \mathbb{C}^{\ell_{r_{k}} \times m_{r_{k}}}: \operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\min }}\right)=0\right\}=\emptyset
$$

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1} and Corollary to p / c, we obtain that the singularity set of the polynomial p / c is

$$
\left\{Z \in \mathbb{C}^{\ell_{1} \times m_{r_{1}}} \times \cdots \times \mathbb{C}^{\ell_{r_{k}} \times m_{r_{k}}}: \operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\min }}\right)=0\right\}=\emptyset
$$

This is possible only if $\operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\text {min }}}\right) \equiv 1$.

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1} and Corollary to p / c, we obtain that the singularity set of the polynomial p / c is

$$
\left\{Z \in \mathbb{C}^{\ell_{r_{1}} \times m_{r_{1}}} \times \cdots \times \mathbb{C}^{\ell_{r_{k}} \times m_{r_{k}}}: \operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\min }}\right)=0\right\}=\emptyset
$$

This is possible only if $\operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\text {min }}}\right) \equiv 1$. Next, from

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I-A_{\min } Z_{n_{\min }} & B_{\min } \\
-C_{\min } Z_{n_{\min }} & D_{\min }
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
-C_{\min } Z_{n_{\min }}\left(I-A_{\min } Z_{n_{\min }}\right)^{-1} & 0 \\
1
\end{array}\right]\left[\begin{array}{cc}
I-A_{\min } Z_{n_{\min }} & 0 \\
c / p
\end{array}\right]\left[\begin{array}{ll}
1 & \left(I-A_{\min } Z_{n_{\min }}\right)^{-1} B \\
0 & I
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
I & B_{\min }^{\times} \\
0 & I
\end{array}\right]\left[\begin{array}{ccc}
I-A_{\min }^{\times} Z_{n_{\min }} & 0 \\
0 & D_{\min }
\end{array}\right]\left[\begin{array}{cc}
l & 0 \\
C_{\min }^{\times} Z_{n_{\min }} & I
\end{array}\right] }
\end{aligned}
$$

Step 8: Contractive determinantal representation. Applying Theorem to R_{1}^{-1} and Corollary to p / c, we obtain that the singularity set of the polynomial p / c is

$$
\left\{Z \in \mathbb{C}^{\ell_{r_{1}} \times m_{r_{1}}} \times \cdots \times \mathbb{C}^{\ell_{r_{k}} \times m_{r_{k}}}: \operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\min }}\right)=0\right\}=\emptyset .
$$

This is possible only if $\operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\text {min }}}\right) \equiv 1$. Next, from

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I-A_{\min } Z_{n_{\min }} & B_{\min } \\
-C_{\min } Z_{n_{\min }} & D_{\min }
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
-C_{\min } Z_{n_{\min }}\left(I-A_{\min } Z_{n_{\min }}\right)^{-1} & 0 \\
1
\end{array}\right]\left[\begin{array}{cc}
1-A_{\min } Z_{n_{\min }} & 0 \\
c / p
\end{array}\right]\left[\begin{array}{ll}
1 & \left(I-A_{\min } Z_{\operatorname{nin}}\right)^{-1} B \\
0 & I
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
1 & B_{\min }^{\times} \\
0 & I
\end{array}\right]\left[\begin{array}{ccc}
I-A_{\min }^{\times} Z_{n_{\min }} & 0 \\
0 & D_{\min }
\end{array}\right]\left[\begin{array}{cc}
l & 0 \\
C_{\min }^{\times} Z_{n_{\min }} & I
\end{array}\right] }
\end{aligned}
$$

we obtain that

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
I-A_{\min } Z_{n_{\min }} & B_{\min } \\
-C_{\min } Z_{n_{\min }} & D_{\min }
\end{array}\right]=\frac{c}{p} \operatorname{det}\left(I-A_{\min } Z_{n_{\min }}\right) \\
&=D_{\min } \operatorname{det}\left(I-A_{\min }^{\times} Z_{n_{\min }}\right)=D_{\min }=\frac{c}{p(0)}=c .
\end{aligned}
$$

It follows that $p=\operatorname{det}\left(I-A_{\min } Z_{n_{\text {min }}}\right)$.

It follows that $p=\operatorname{det}\left(I-A_{\min } Z_{n_{\text {min }}}\right)$. Since $\left\|A_{\text {min }}\right\|<1$, set $K=A_{\text {min }}$, and then

$$
p=\operatorname{det}\left(I-K Z_{n_{\min }}\right) .
$$

It follows that $p=\operatorname{det}\left(I-A_{\min } Z_{n_{\text {min }}}\right)$. Since $\left\|A_{\min }\right\|<1$, set $K=A_{\text {min }}$, and then

$$
p=\operatorname{det}\left(I-K Z_{n_{\min }}\right)
$$

Corollary

Every strongly \mathbb{D}^{d}-stable polynomial p is an eventual Agler denominator, i.e., there exists $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}, n \geq \operatorname{deg} p$, such that the rational inner function

$$
\frac{z^{n} \bar{p}(1 / z)}{p(z)}
$$

is in the Schur-Agler class. Here for $z=\left(z_{1}, \ldots, z_{d}\right)$ we set $1 / z=\left(1 / z_{1}, \ldots, 1 / z_{d}\right), \bar{p}(z)=\overline{p\left(\bar{z}_{1}, \ldots, \bar{z}_{d}\right)}$, and $z^{n}=z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}$.

It follows that $p=\operatorname{det}\left(I-A_{\min } Z_{n_{\text {min }}}\right)$. Since $\left\|A_{\min }\right\|<1$, set $K=A_{\text {min }}$, and then

$$
p=\operatorname{det}\left(I-K Z_{n_{\min }}\right) .
$$

Corollary

Every strongly \mathbb{D}^{d}-stable polynomial p is an eventual Agler denominator, i.e., there exists $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}, n \geq \operatorname{deg} p$, such that the rational inner function

$$
\frac{z^{n} \bar{p}(1 / z)}{p(z)}
$$

is in the Schur-Agler class. Here for $z=\left(z_{1}, \ldots, z_{d}\right)$ we set $1 / z=\left(1 / z_{1}, \ldots, 1 / z_{d}\right), \bar{p}(z)=\overline{p\left(\bar{z}_{1}, \ldots, \bar{z}_{d}\right)}$, and $z^{n}=z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}$. Indeed, by Main Theorem applied to \mathbb{D}^{d}, p has a strictly contractive determinantal representation. By [Grinshpan, K-V, Woerdeman, 2013], p is an eventual Agler denominator.

It follows that $p=\operatorname{det}\left(I-A_{\min } Z_{n_{\text {min }}}\right)$. Since $\left\|A_{\min }\right\|<1$, set $K=A_{\text {min }}$, and then

$$
p=\operatorname{det}\left(I-K Z_{n_{\min }}\right) .
$$

Corollary

Every strongly \mathbb{D}^{d}-stable polynomial p is an eventual Agler denominator, i.e., there exists $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}, n \geq \operatorname{deg} p$, such that the rational inner function

$$
\frac{z^{n} \bar{p}(1 / z)}{p(z)}
$$

is in the Schur-Agler class. Here for $z=\left(z_{1}, \ldots, z_{d}\right)$ we set $1 / z=\left(1 / z_{1}, \ldots, 1 / z_{d}\right), \bar{p}(z)=\overline{p\left(\bar{z}_{1}, \ldots, \bar{z}_{d}\right)}$, and $z^{n}=z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}$. Indeed, by Main Theorem applied to \mathbb{D}^{d}, p has a strictly contractive determinantal representation. By [Grinshpan, K-V, Woerdeman, 2013], p is an eventual Agler denominator. Notice that $n=\operatorname{deg} p$ doesn't always work [GK-VW, 2013].

THANK YOU!

