
Contractive determinantal representations of
stable polynomials on a matrix polyball

Dmitry Kaliuzhnyi-Verbovetskyi1

(Drexel University, Philadelphia, PA)

Iowa City, June 4-5, 2016

1Joint work with A. Grinshpan, V. Vinnikov, and H. J. Woerdeman



Let D ⊂ Cd be a domain.

A polynomial p ∈ C[z1, . . . , zd ] is called
D-stable if it has no zeros in D, and strongly D-stable if it has no
zeros in D.

d = 1: If p(0) = 1, then

p = (1− a1z) · · · (1− anz) = det(I − Kz),

where ai = 1/zi , i = 1, . . . , n, the zeros zi of p are counted
according to their multiplicities, K = diag[a1, . . . , an], and
n = deg p.

If D is the unit disk D = {z ∈ C : |z | < 1}, then p is D-stable
(resp., strongly D-stable) iff ‖K‖ ≤ 1 (resp., ‖K‖ < 1).
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d = 2: p ∈ C[z1, z2] is D2-stable (resp., strongly D2-stable) and
p(0) = 1 iff

p = det(I − KZn), Zn = z1In1 ⊕ z2In2 ,

where n = (n1, n2), nr = degr p, r = 1, 2, K ∈ C(n1+n2)×(n1+n2),
and ‖K‖ ≤ 1 (resp., ‖K‖ < 1) [Kummert, 1989], [Grinshpan, K-V,
Vinnikov, Woerdeman, 2016].

d > 2: Let p ∈ C[z1, . . . , zd ] be Dd -stable (resp., strongly
Dd -stable) and p(0) = 1. Question: Is it always possible to write

p = det(I − KZn), Zn =
d⊕

r=1

zr Inr ,

where n = (n1, . . . , nd), nr = degr p, r = 1, . . . , d , K ∈ C|n|×|n|,
|n| = n1 + · · ·+ nd , and ‖K‖ ≤ 1 (resp., ‖K‖ < 1)?

Answer: YES in some special cases; e.g., when p is linear, NO in
general [Grinshpan, K-V, Woerdeman, 2013].
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Relax.

Question: Is it always possible with nr ≥ degr p,
r = 1, . . . , d?

Answer: YES in the strongly stable case and for more general
domains!

Consider a unit matrix polyball

B := B`1×m1 × · · · × B`k×mk

=
{

Z = (Z (1), . . . ,Z (k)) ∈ C`1×m1 × · · · × C`k×mk

: ‖Z (r)‖ < 1, r = 1, . . . , k
}
.

Here the d variables are matrix entries z
(r)
ij , and d =

∑k
r=1 `rmr .

Important special cases:

I k = d , `r = mr = 1, r = 1, . . . , d : B = Dd (unit polydisk).

I k = 1, d = `m, B = B`×m (matrix unit ball a.k.a. Cartan’s
domain of type I). In particular, if ` = 1, then
B = Bd = {z ∈ Cd :

∑d
i=1 |zi |2 < 1} (unit ball).
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Theorem (Main)

Let p = C[z
(r)
ij : r = 1, . . . , k , i = 1, . . . , `r , j = 1, . . . ,mr ], be

strongly B-stable, with p(0) = 1. Then there exist

n = (n1, . . . , nk) ∈ Zk
+ and K ∈ C

k∑
r=1

mrnr×
k∑

r=1
`rnr

, ‖K‖ < 1, so that

p = det(I − KZn), Zn =
k⊕

r=1

(Z (r) ⊗ Inr ).

Sketch of the proof.
Step 1: Matrix-valued Hermitian Positivstellensatz. Let

P(w , z) =
∑
λ, µ

Pλµwλzµ ∈ Cγ×γ [w , z ],

where w = (w1, . . . ,wd), z = (z1, . . . , zd), wλ = wλ1
1 · · ·w

λd
d , etc.

Define
P(T ∗,T ) :=

∑
λ, µ

Pλµ ⊗ T ∗λTµ,
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where T = (T1, . . . ,Td) is a d-tuple of commuting bounded
operators on a Hilbert space.

We denote by Cγ×γ [w , z ]h the
vector space over R consisting of Hermitian polynomials from
Cγ×γ [w , z ] satisfying Pλµ = P∗µλ. If

P∗(w , z) =
∑
λ, µ

P∗µλwλzµ,

then the last property means that P∗(w , z) = P(w , z).

We will say that M = {Mγ}γ∈N, with Mγ ⊆ Cγ×γ [w , z ]h is a
matrix system of Hermitian quadratic modules over C[z ] if

1. Mγ +Mγ ⊆Mγ , γ ∈ N.

2. 1 ∈M1.

3. For every γ, γ′ ∈ N, P ∈Mγ , and F ∈ Cγ×γ′ [z ], one has
F ∗(w)P(w , z)F (z) ∈Mγ′ .

This generalizes the notion of a Hermitian quadratic module over
C[z ], where (1)–(3) hold with γ = γ′ = 1 only.
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Observations

1. M respects direct sums, i.e., Mγ ⊕Mγ′ ⊆Mγ+γ′ .

2. 0γ×γ , Iγ ∈Mγ ; moreover, A ∈Mγ if A ∈ Cγ×γ is such that
A = A∗ ≥ 0.

3. For each γ, Mγ is a convex cone.

The following is a generalization of a lemma from [Putinar,
Scheiderer, 2014].

Lemma
Let M be a matrix system of Hermitian quadratic modules over
C[z ]. TFAE:

(i) For every γ ∈ N, Iγ is an algebraic interior point of Mγ , i.e.,
RIγ +Mγ = Cγ×γ [w , z ]h.

(ii) 1 is an algebraic interior point of M1, i.e.,
R +M1 = C[w , z ]h.

(iii) For every i = 1, . . . , d, one has −wizi ∈ R +M1.
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A matrix system M = {Mγ}γ∈N of Hermitian quadratic modules
over C[z ] that satisfies any (and hence all) of properties (i)–(iii) in
the Lemma is called Archimedean.

Starting with polynomials Pj ∈ Cγj×γj [w , z ]h, we introduce the
sets Mγ , γ ∈ N, consisting of polynomials P ∈ Cγ×γ [w , z ]h for
which there exist Hj ∈ Cγjnj×γ [z ], for some nj ∈ N, j = 0, . . . , k,
such that

P(w , z) = H∗0 (w)H0(z) +
k∑

j=1

H∗j (w)(Pj(w , z)⊗ Inj )Hj(z).

Here γ0 = 1. We also assume that there exists a constant c > 0
such that c2 − wizi ∈M1 for every i = 1, . . . , d . Then
M =MP1,...,Pk

= {Mγ}γ∈N is an Archimedean matrix system of
Hermitian quadratic modules generated by P1, . . . ,Pk .
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The following theorem is a matrix-valued generalization of the
Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar,
2007].

Theorem
Under the assumptions above, let P ∈ Cγ×γ [w , z ] be such that for
every d-tuple T = (T1, . . . ,Td) of Hilbert space operators
satisfying Pj(T ∗,T ) ≥ 0, j = 1, . . . , k, we have that
P(T ∗,T ) > 0. Then P ∈Mγ .

The proof extends the one from [Helton, Putinar, 2007]. It uses
the Minkowski–Eidelheit–Kakutani separation theorem and a
special construction of T .
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Step 2: Realization. Given P ∈ C`×m[z ], z = (z1 . . . , zd), let

DP := {z ∈ Cd : ‖P(z)‖ < 1}.

Let TP be the set of d-tuples T of commuting bounded operators
on a Hilbert space satisfying ‖P(T )‖ < 1.
For T ∈ TP, the Taylor joint spectrum σ(T ) lies in DP, and
therefore for an operator-valued function F holomorphic on DP

one defines F (T ) by means of Taylor’s functional calculus. The
associated Agler norm is defined by

‖F‖A,P = sup
T∈TP

‖F (T )‖.

We say that F belongs to the Schur–Agler class SAP(U ,Y)
associated with P, if F : DP → L(U ,Y) is holomorphic and
‖F‖A,P ≤ 1.
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By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004],
F ∈ SAP(U ,Y) iff there exist a Hilbert space X and a unitary
colligation [

A B
C D

]
: (Cm ⊗X )⊕ U → (C` ⊗X )⊕ Y

such that

F (z) = D + C (P(z)⊗ IX )
(

I − A(P(z)⊗ IX )
)−1

B.

This generalizes [Agler, 1990] from the case P = diag[z1, . . . , zd ]
DP = Dd .
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Theorem
Let P =

⊕k
r=1 P(r), where P(r) ∈ C`r×mr [z ] and

Pr (w , z) = Imr − P(r)∗(w)P(r)(z)

satisfy the Archimedean condition.

Let F = QR−1 be a rational
α× β matrix-valued function which is regular on DP and satisfies
‖F‖A,P < 1. Then there exist n = (n1, . . . , nk) ∈ Zk

+ and a

contraction colligation matrix

[
A B
C D

]
of size

(
k∑

r=1
mrnr + α)× (

k∑
r=1

`rnr + β) such that

F = D + CPn(I − APn)−1B, Pn =
k⊕

r=1

(P(r) ⊗ Inr ).
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The proof uses the matrix-valued Hermitian Nullstellensatz which
produces a decomposition

R∗(w)R(z)− Q∗(w)Q(z) = H∗0 (w)H0(z)

+
k∑

j=1

H∗j (w)
(

(Imr − P(r)∗(w)P(r)(z))⊗ Inj

)
Hj(z),

and then

Iβ − F ∗(w)F (z) = G ∗0 (w)G0(z)

+
k∑

j=1

G ∗j (w)
(

(Imr − P(r)∗(w)P(r)(z))⊗ Inj

)
Gj(z).

Then a lurking contraction argument is applied to construct a
colligation...
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In a special case, when P = Z =
⊕k

r=1 Z (r), one has DP = B, the
Archimedean condition holds, and

F = D + CZn(I − AZn)−1B, Zn =
k⊕

r=1

(Z (r) ⊗ Inr ).

Now we are going back to our main theorem...
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Since p is strongly B-stable, it has no zeros in ρB for some ρ > 1
sufficiently close to 1.

Thus the rational function g = 1/p is
regular on ρB, and gρ defined by gρ(z) = g(ρz) is regular on B. It
follows that ‖gρ‖A,Z <∞, and we can find a constant c > 0 so
that ‖cgρ‖A,Z < 1. We can write a contractive realization for
F = cgρ:

cgρ = D + CZn(I − AZn)−1B.

Therefore

cg = D + C (ρ−1Zn)(I −A(ρ−1Zn))−1B = D + C ′Zn(I −A′Zn)−1B,

where C ′ = ρ−1C and A′ = ρ−1A are strict contractions, and[
A′ B
C ′ D

]
is a contraction.
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where C ′ = ρ−1C and A′ = ρ−1A are strict contractions, and[
A′ B
C ′ D

]
is a contraction.



Step 3: NC lifting. Next we lift the rational function cg to a nc
rational expression using the same realization formula,

R0 = D + C ′zn(I − A′zn))−1B,

now with zn =
⊕k

r=1(z(r) ⊗ Inr ) and the entries z
(r)
ij of matrices

z(r) being nc indeterminates, r = 1, . . . , k, i = 1, . . . , `r ,
j = 1, . . . ,mr .

This expression is the transfer function of a
dissipative structured noncommutative multidimensional linear
system of [Ball, Groenewald, and Malakorn, 2006].
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Step 4: Minimal compression. Using the result from [Ball,
Groenewald, and Malakorn, 2005], one can compress the given
structured noncommutative multidimensional noncommutative
linear system to a minimal one associated with the colligation

matrix

[
Amin Bmin

Cmin Dmin

]
, i.e., the one with minimal possible nr = (nr )min,

r = 1, . . . , k .

The colligation matrix is still contractive and such that
‖Amin‖ < 1 and ‖Cmin‖ < 1. Moreover, the corresponding transfer
function

R1 = Dmin + Cminznmin

(
I − Aminznmin

)−1
Bmin

is equivalent to R0. That is, when we replace the variables z
(r)
ij by s × s

matrices, the values of R1 and R0 coincide on a Zariski dense set of

(Cs×s)
d

, for every s ∈ N. In other words, R1 and R0 represent the same

rational nc function R [K-V, Vinnikov, 2009].
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Step 5: Inversion. Since p(0) = 1, we have

Dmin = D = cg(0) = c/p(0) = c 6= 0.

By [BGM, 2005],

R−11 = D×min + C×minzn(I − A×minzn)−1B×min,

where[
A×min B×min

C×min D×min

]
=

[
Amin − BminD−1minCmin BminD−1min

−D−1minCmin D−1min

]
.

Moreover, the realization of R−11 is minimal.
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Step 6: NC singularities theorem. The domain of a scalar or
matrix-valued nc rational expression R, dom R, consists of d-tuples
Z of s × s matrices, s = 1, 2, . . ., for which all the matrix
inversions in R are well-defined, so that R(Z ) makes sense.

We
write R ∈ R if R represents a rational nc function R. We define
the domain of R as

domR =
⋃
R∈R

dom R.

Theorem
Let R be an α× β matrix-valued nc rational function, with a
minimal realization

R = D + Czn(I − Azn)−1B,

Then
domR = dom R = dom

(
(I − Azn)−1

)
.

This generalizes an earlier result [K-V, Vinnikov, 2009] for Bd to B.
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In other words, the singularity set of R is

∞∐
s=1

{
Z = (Z (1), . . . ,Z (k)) ∈ (Cs×s)`1×m1 × · · · × (Cs×s)`k×mk

∼= (C`1×m1 × · · · × C`k×mk )⊗ Cs×s : det(I − A� Zn) = 0
}
,

where A� Zn ∈ C
∑k

r=1 mrnr s ×
∑k

r=1 mrnr s is a block∑k
r=1 mr ×

∑k
r=1 mr matrix with blocks

(A� Zn)
(rr ′)
ij =

`r′∑
κ=1

A
(rr ′)
iκ ⊗ Z

(r ′)
κj ∈ Cnr×nr′ ⊗ Cs×s ∼= Cnr s×nr′ s ,

i = 1, . . . ,mr , j = 1, . . . ,mr ′ .



In other words, the singularity set of R is

∞∐
s=1

{
Z = (Z (1), . . . ,Z (k)) ∈ (Cs×s)`1×m1 × · · · × (Cs×s)`k×mk

∼= (C`1×m1 × · · · × C`k×mk )⊗ Cs×s : det(I − A� Zn) = 0
}
,

where A� Zn ∈ C
∑k

r=1 mrnr s ×
∑k

r=1 mrnr s is a block∑k
r=1 mr ×

∑k
r=1 mr matrix with blocks

(A� Zn)
(rr ′)
ij =

`r′∑
κ=1

A
(rr ′)
iκ ⊗ Z

(r ′)
κj ∈ Cnr×nr′ ⊗ Cs×s ∼= Cnr s×nr′ s ,

i = 1, . . . ,mr , j = 1, . . . ,mr ′ .



Step 7: Back to commuting variables.

Corollary

The variety of singularities of a (commutative) α× β
matrix-valued rational function f which can be represented as a

restriction of R from Theorem above to scalars z
(r)
ij (i.e., to the

case s = 1) is given by{
Z = (Z (1), . . . ,Z (k)) ∈ C`1×m1×· · ·×C`k×mk : det(I−AZn) = 0

}
,

where Zn =
⊕k

r=1(Z (r) ⊗ Inr ).



Step 8: Contractive determinantal representation. Applying
Theorem to R−11

and Corollary to p/c , we obtain that the
singularity set of the polynomial p/c is{

Z ∈ C`r1×mr1 × · · · × C`rk×mrk : det(I − A×minZnmin) = 0
}

= ∅.

This is possible only if det(I − A×minZnmin) ≡ 1. Next, from[
I − AminZnmin Bmin

−CminZnmin Dmin

]
=
[

I 0

−CminZnmin
(I − AminZnmin

)−1 I

] [
I − AminZnmin

0
0 c/p

] [
I (I − AminZnmin

)−1B
0 I

]
=

[
I B×min

0 I

] [
I − A×minZnmin 0

0 Dmin

] [
I 0

C×minZnmin I

]
we obtain that

det

[
I − AminZnmin

Bmin

−CminZnmin
Dmin

]
=

c

p
det(I − AminZnmin

)

= Dmin det(I − A×minZnmin) = Dmin =
c

p(0)
= c .
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It follows that p = det(I − AminZnmin).

Since ‖Amin‖ < 1, set
K = Amin, and then

p = det(I − KZnmin). �

Corollary

Every strongly Dd -stable polynomial p is an eventual Agler
denominator, i.e., there exists n = (n1, . . . , nd) ∈ Zd

+, n ≥ deg p,
such that the rational inner function

znp̄(1/z)

p(z)

is in the Schur–Agler class. Here for z = (z1, . . . , zd) we set
1/z = (1/z1, . . . , 1/zd), p̄(z) = p(z̄1, . . . , z̄d), and zn = zn1

1 · · · z
nd
d .

Indeed, by Main Theorem applied to Dd , p has a strictly
contractive determinantal representation. By [Grinshpan, K-V,
Woerdeman, 2013], p is an eventual Agler denominator. Notice
that n = deg p doesn’t always work [GK-VW, 2013].
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THANK YOU!


