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d =1: If p(0) =1, then

p=(1—-a1z) - (1 — apz) = det(/ — Kz),

where a; =1/z;, i =1,...,n, the zeros z; of p are counted
according to their multiplicities, K = diag|as, ..., as], and
n = degp.

If D is the unit disk D = {z € C: |z| < 1}, then p is D-stable
(resp., strongly D-stable) iff |K|| <1 (resp., ||K]|| < 1).
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d > 2: Let p € C[z,...,zq4] be DYstable (resp., strongly
D-stable) and p(0) = 1. Question: Is it always possible to write

d
p=det(l — KZ,), Zn=EPzln,,
r=1

where n= (n1,...,ny), n, =deg,p, r=1,...,d, K € ClrlxInl,
|n| =n +---+ ng, and ||K|| <1 (resp., |K|| < 1)?

Answer: YES in some special cases; e.g., when p is linear, NO in
general [Grinshpan, K-V, Woerdeman, 2013].
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Relax. Question: Is it always possible with n, > deg, p,
r=1,...,d?
Answer: YES in the strongly stable case and for more general

domains!

Consider a unit matrix polyball
B:=BOXmM ... x BUXm«
={Z=(2D,..., 209 e ctrm x ... x Clxm
Z0) <1, r= 1,...,k}.

Here the d variables are matrix entries zl-S-r), and d = Zle £rm,.

Important special cases:
» k=d l,=m,=1,r=1,...,d: B=D9 (unit polydisk).
» k=1,d="¢m, B=B>" (matrix unit ball a.k.a. Cartan’s

domain of type I). In particular, if £ =1, then
B=BY={zeC? 29 |z[2 <1} (unit ball).
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Sketch of the proof.
Step 1: Matrix-valued Hermitian Positivstellensatz. Let

P(w,z) = Z Pywizt € Cw, 2],
A,

where w = (wy, ..., wy), z = (z1,...,24), W = Wf\l-"Wg\d, etc.

Define
P(T*\T):=> Pn®THTH,
A,
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where T = (Ty,..., Ty4) is a d-tuple of commuting bounded
operators on a Hilbert space. We denote by C"*7[w, z];, the
vector space over R consisting of Hermitian polynomials from
CY7w, 2] satisfying Py, = P}, If

P*(w,z) = Z P;)\WAZ”,
A,

then the last property means that P*(w, z) = P(w, z).
We will say that M = {M, },en, with M, C C"™V[w, z]y, is a
matrix system of Hermitian quadratic modules over C[z] if
L. My+M,CM,, yeN
2. 1€ M;.
3. For every 7,7/ €N, P € M., and F € C7™7'[2], one has
F*(w)P(w,z)F(z) € M.,.

This generalizes the notion of a Hermitian quadratic module over
Cl[z], where (1)—(3) hold with v =+ =1 only.
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Observations

1. M respects direct sums, i.e., M~ ® M C My .

2. Oyx~, I, € M.y, moreover, A €¢ M, if Ac C"™7 is such that
A=A">0.

3. For each vy, M., is a convex cone.

The following is a generalization of a lemma from [Putinar,
Scheiderer, 2014].

Lemma

Let M be a matrix system of Hermitian quadratic modules over

Clz]. TFAE:

(i) For every v € N, I, is an algebraic interior point of M., i.e.,

R, + My = C7 7w, z]5.

(i) 1 is an algebraic interior point of My, i.e.,
R + My = Clw, z]p.

(iii) Foreveryi=1,...,d, one has —w;z; € R + M;.
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A matrix system M = { M, },cn of Hermitian quadratic modules
over C[z] that satisfies any (and hence all) of properties (i)—(iii) in
the Lemma is called Archimedean.

Starting with polynomials P; € C%*%[w, z]},, we introduce the
sets M., v € N, consisting of polynomials P € C"*7[w, z]}, for
which there exist H; € C%"%*7[z], for some nj € N, j=0,...,k,
such that

k
P(w,z) = Hy(w)Ho(2) + > Hf (w)(Pj(w, 2) @ In))Hj(2).
j=1

Here 79 = 1. We also assume that there exists a constant ¢ > 0
such that ¢ — wjz; € M; forevery i =1,...,d. Then

77777 P, = {M} en is an Archimedean matrix system of
Hermitian quadratic modules generated by P1, ..., Pk.
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The following theorem is a matrix-valued generalization of the
Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar,
2007].

Theorem

Under the assumptions above, let P € C"*7[w, z] be such that for
every d-tuple T = (Ti,..., Ty4) of Hilbert space operators
satisfying Pj(T*, T) >0, j=1,...,k, we have that
P(T*,T)>0. Then P € M.,.

The proof extends the one from [Helton, Putinar, 2007]. It uses
the Minkowski—Eidelheit—Kakutani separation theorem and a
special construction of T.
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Step 2: Realization. Given P € C**™[z], z = (z1..., z4), let
Dp = {zeCY: ||P(2)| < 1}.

Let 7p be the set of d-tuples T of commuting bounded operators
on a Hilbert space satisfying ||P(T)|| < 1.

For T € 7Tp, the Taylor joint spectrum o(T) lies in Dp, and
therefore for an operator-valued function F holomorphic on Dp
one defines F(T) by means of Taylor's functional calculus. The
associated Agler norm is defined by

|1Fllap = sup [[F(T)I
TeTp

We say that F belongs to the Schur-Agler class SAp(U,))
associated with P, if F: Dp — L(U,Y) is holomorphic and
[Fllap <1



By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004],
F € SAp(U, DY) iff there exist a Hilbert space X’ and a unitary
colligation

[A B
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By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004],
F € SAp(U, DY) iff there exist a Hilbert space X’ and a unitary
colligation

[A B

. m J4
: D] (C"eX)eU - (C'aX)8)Y

such that

F(z) =D+ C(P(2) @ Ix) (1 ~ A(P(z) @ Ix)) B.

This generalizes [Agler, 1990] from the case P = diag[z, ..., z4]
Dp =D
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Theorem
Let P = @le P(), where P(") € C/*™r[z] and

Po(w,z) = I, — PO (w)PU)(2)

satisfy the Archimedean condition. Let F = QR™! be a rational
«a X 8 matrix-valued function which is regular on Dp and satisfies
|Fll.ap < 1. Then there exist n = (ny,...,nx) € ZX and a

contraction colligation matrix [é\. g} of size

k

K
(>> men, + &) x (> £.n, + B) such that
r=1 r=1

F=D+CP,(I-AP,)'B, P,=PP"l,).
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The proof uses the matrix-valued Hermitian Nullstellensatz which
produces a decomposition

R*(w)R(z) — Q*(w)Q(2) = Ho(w)Ho(2)

k
+ > Hi (W) (U, = PO (w)PO(2)) @ I ) Hi(2),
j=1

and then

Is = F*(w)F(2) = Gg(w)Go(2)
k

+ 3 67 (w)((m, = PO*(W)P(2) © Iy ) G1(2).

j=1

Then a lurking contraction argument is applied to construct a
colligation...
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In a special case, when P =Z = @le Z(1, one has Dp = B, the
Archimedean condition holds, and

k
F=D+CZ(l - AZ)'B,  Z,=PZ" @ 1).
r=1

Now we are going back to our main theorem...
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Since p is strongly B-stable, it has no zeros in pB for some p > 1
sufficiently close to 1. Thus the rational function g = 1/p is
regular on pB, and g, defined by g,(z) = g(pz) is regular on B. It
follows that ||g,||.4,z < 00, and we can find a constant ¢ > 0 so
that ||cgyll4,z < 1. We can write a contractive realization for
F = cgy:

cg, = D+ CZ,(1 — AZ,) 'B.

Therefore
g =D+C(p~1Z)I-A(p~tZ,))*B=D+C'Z,(I-AZ,) !B,
where C’ = p~1C and A’ = p~ LA are strict contractions, and

A BJ| . .
c' D IS a contraction.
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Step 3: NC lifting. Next we lift the rational function cg to a nc
rational expression using the same realization formula,

Ro =D+ C'z,(1 — A'z,)) !B,

now with z, = @le(z(r) ® In,) and the entries zl-S-r) of matrices
z(n) being nc indeterminates, r=1,...,k, i=1,...,¢,,
j=1,...,m,. This expression is the transfer function of a

dissipative structured noncommutative multidimensional linear
system of [Ball, Groenewald, and Malakorn, 2006].
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Step 4: Minimal compression. Using the result from [Ball,
Groenewald, and Malakorn, 2005], one can compress the given
structured noncommutative multidimensional noncommutative
linear system to a minimal one associated with the colligation
Amin Bmin
Cmin Dmin
r=1,...,k. The colligation matrix is still contractive and such that
| Amin]| < 1 and ||CGmin|| < 1. Moreover, the corresponding transfer
function

min’

matrix [ ] i.e., the one with minimal possible n, = (n,)

—1
Rl = Dmin + Cminznmin (I - Aminznmin) Bmin
(r)

is equivalent to Ry. That is, when we replace the variables z; by s xs

matrices, the values of R; and Ry coincide on a Zariski dense set of
((Csxs)d, for every s € N. In other words, R; and Ry represent the same
rational nc function R [K-V, Vinnikov, 2009].
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Step 5: Inversion. Since p(0) =1, we have

Dyin = D = Cg(O) = C/p(O) =c 7é 0.

By [BGM, 2005],

Ri'=DX +CX z

min m1n

(/_AX ) lBX

mm min’
where

Ar>1<1m B;:lm Amln B 1an1 len Bmlanlln
- _Dlc p-L |-

min ~min min

Moreover, the realization of Rl_1 is minimal.



Step 6: NC singularities theorem. The domain of a scalar or
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inversions in R are well-defined, so that R(Z) makes sense.
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Step 6: NC singularities theorem. The domain of a scalar or
matrix-valued nc rational expression R, dom R, consists of d-tuples
Z of s X s matrices, s = 1,2,..., for which all the matrix
inversions in R are well-defined, so that R(Z) makes sense. We
write R € SR if R represents a rational nc function SR. We define
the domain of R as

dom R = U dom R.
ReR

Theorem
Let R be an a x 3 matrix-valued nc rational function, with a
minimal realization

R =D+ Cz,(l — Az,)"1B,

Then
dom R = dom R = dom ((I - Az,,)_l).

This generalizes an earlier result [K-V, Vinnikov, 2009] for B to B.



In other words, the singularity set of R is

H {Z — (Z(l), N .,Z(k)) e (CSXS)élxml U, (CSXS)Zkak

s=1

~ (Célxml NETRY. Cékxmk) ® CS*s: det(l —A@Zn) = 0}’



In other words, the singularity set of R is
H {Z — (Z(l), o Z(k)) e (CSXS)élxml U, (CSXS)Zkak
= (CHX™ - x CIXM) @ C: det(1 — A G Z,) = 0},

k k .
where A® Z, € C2r=1 Menrs X321 Menes s o block
Z’:Zl m, X Zf:l m, matrix with blocks

(A@ Z (rr ZA (rr") ® Z(r (C”'X”r’ ®Cs><s ~ (Cn,sxn,/s’

=1 ....m, =1 ..., mpy.



Step 7: Back to commuting variables.

Corollary

The variety of singularities of a (commutative) a X [3
matrix-valued rational function f which can be represented as a

restriction of R from Theorem above to scalars z ( i.e., to the
case s = 1) is given by

{zz(z(l),...,z<k))ecflxmlx X CHXMe ;. det(I—AZ,) = 0},

where Z, = @®*_ (20 @ 1,,).
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Step 8: Contractive determinantal representation. Applying
Theorem to Rfl and Corollary to p/c, we obtain that the
singularity set of the polynomial p/c is

{z € ClnXm 5 o x ClaX M det(] — A%

min

Z, )= 0} = 0.

Z, .. ) = 1. Next, from

NMmin

This is possible only if det(/ — A*

min

I — Aminanin Bmin
- Cmin anin Dmin_
. / Of 1= AminZn,;, 0 I (I — AminZn,_. )" 'B
T | ConinZogin (0 = AminZng, )7 [ 0 SARH P
X r X
— I Bmin I - Aminanin O I O
o /|| o Duin] | CXZon |

we obtain that

I = AminZnpi Bmin| _ €
—CninZnin Dmin:| B p det(/ Aman"mi“)

= Dmin det(l - A;I(lillznmin) = Dmin = —— = C.

det {
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Corollary
Every strongly D9-stable polynomial p is an eventual Agler
denominator, i.e., there exists n = (ny,...,ng) € Zi, n > degp,
such that the rational inner function
2"P(1/2)
p(2)
is in the Schur-Agler class. Here for z = (zi,...,z4) we set

1/z=(1/z1,...,1/z4), B(2) = p(Z1, ..., 24), and 2" = z{" - - - 2",
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Indeed, by Main Theorem applied to D9, p has a strictly
contractive determinantal representation. By [Grinshpan, K-V,
Woerdeman, 2013], p is an eventual Agler denominator.



It follows that p = det(/ — AminZn,,,
K = Amin, and then

p=det(l — KZ,_ ). O

). Since ||Amin|| < 1, set

Corollary
Every strongly D9-stable polynomial p is an eventual Agler
denominator, i.e., there exists n = (ny,...,ng) € Zi, n > degp,
such that the rational inner function
2"P(1/2)

p(2)

is in the Schur-Agler class. Here for z = (zi,...,z4) we set
ng

1/z=(1/z1,...,1/zq), p(z) = p(Z1,...,24), and 2" = z;* - - - Z°.
Indeed, by Main Theorem applied to D9, p has a strictly
contractive determinantal representation. By [Grinshpan, K-V,
Woerdeman, 2013], p is an eventual Agler denominator. Notice
that n = deg p doesn’t always work [GK-VW, 2013].



THANK YOU!



