Contractive determinantal representations of stable polynomials on a matrix polyball

Dmitry Kaliuzhnyi-Verbovetskyi¹ (Drexel University, Philadelphia, PA)

Iowa City, June 4-5, 2016

¹Joint work with A. Grinshpan, V. Vinnikov, and H.J. Woerdeman 📳 📃 🔗 ૧૯

Let $\mathcal{D} \subset \mathbb{C}^d$ be a domain.

Let $\mathcal{D} \subset \mathbb{C}^d$ be a domain. A polynomial $p \in \mathbb{C}[z_1, \ldots, z_d]$ is called \mathcal{D} -stable if it has no zeros in \mathcal{D} ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\mathcal{D} \subset \mathbb{C}^d$ be a domain. A polynomial $p \in \mathbb{C}[z_1, \ldots, z_d]$ is called \mathcal{D} -stable if it has no zeros in \mathcal{D} , and strongly \mathcal{D} -stable if it has no zeros in $\overline{\mathcal{D}}$.

Let $\mathcal{D} \subset \mathbb{C}^d$ be a domain. A polynomial $p \in \mathbb{C}[z_1, \ldots, z_d]$ is called \mathcal{D} -stable if it has no zeros in \mathcal{D} , and strongly \mathcal{D} -stable if it has no zeros in $\overline{\mathcal{D}}$.

d = 1: If p(0) = 1, then $p = (1 - a_1 z) \cdots (1 - a_n z) = \det(I - Kz)$, where $a_i = 1/z_i$, i = 1, ..., n, the zeros z_i of p are counted according to their multiplicities, $K = \operatorname{diag}[a_1, \ldots, a_n]$, and $n = \deg p$.

Let $\mathcal{D} \subset \mathbb{C}^d$ be a domain. A polynomial $p \in \mathbb{C}[z_1, \ldots, z_d]$ is called \mathcal{D} -stable if it has no zeros in \mathcal{D} , and strongly \mathcal{D} -stable if it has no zeros in $\overline{\mathcal{D}}$.

d = 1: If p(0) = 1, then $p = (1 - a_1 z) \cdots (1 - a_n z) = \det(I - Kz)$, where $a_i = 1/z_i$, i = 1, ..., n, the zeros z_i of p are counted according to their multiplicities, $K = \operatorname{diag}[a_1, \ldots, a_n]$, and $n = \deg p$. If \mathcal{D} is the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, then p is \mathbb{D} -stable

(resp., strongly \mathbb{D} -stable) iff $||K|| \leq 1$ (resp., ||K|| < 1).

 $d=2: \ p\in \mathbb{C}[z_1,z_2]$ is \mathbb{D}^2 -stable (resp., strongly \mathbb{D}^2 -stable) and p(0)=1 iff

$$p = \det(I - KZ_n), \quad Z_n = z_1 I_{n_1} \oplus z_2 I_{n_2},$$

where $n = (n_1, n_2)$, $n_r = \deg_r p$, r = 1, 2, $K \in \mathbb{C}^{(n_1+n_2)\times(n_1+n_2)}$, and $||K|| \le 1$ (resp., ||K|| < 1) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].

 $d=2: p \in \mathbb{C}[z_1, z_2]$ is \mathbb{D}^2 -stable (resp., strongly \mathbb{D}^2 -stable) and p(0)=1 iff

$$p = \det(I - KZ_n), \quad Z_n = z_1 I_{n_1} \oplus z_2 I_{n_2},$$

where $n = (n_1, n_2)$, $n_r = \deg_r p$, r = 1, 2, $K \in \mathbb{C}^{(n_1+n_2)\times(n_1+n_2)}$, and $||K|| \le 1$ (resp., ||K|| < 1) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].

d > 2: Let $p \in \mathbb{C}[z_1, \ldots, z_d]$ be \mathbb{D}^d -stable (resp., strongly \mathbb{D}^d -stable) and p(0) = 1. Question: Is it always possible to write

$$p = \det(I - KZ_n), \quad Z_n = \bigoplus_{r=1}^d z_r I_{n_r},$$

where $n = (n_1, ..., n_d)$, $n_r = \deg_r p$, r = 1, ..., d, $K \in \mathbb{C}^{|n| \times |n|}$, $|n| = n_1 + \cdots + n_d$, and $||K|| \le 1$ (resp., ||K|| < 1)?

 $d=2: p \in \mathbb{C}[z_1, z_2]$ is \mathbb{D}^2 -stable (resp., strongly \mathbb{D}^2 -stable) and p(0)=1 iff

$$p = \det(I - KZ_n), \quad Z_n = z_1 I_{n_1} \oplus z_2 I_{n_2},$$

where $n = (n_1, n_2)$, $n_r = \deg_r p$, r = 1, 2, $K \in \mathbb{C}^{(n_1+n_2)\times(n_1+n_2)}$, and $||K|| \le 1$ (resp., ||K|| < 1) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].

d > 2: Let $p \in \mathbb{C}[z_1, \ldots, z_d]$ be \mathbb{D}^d -stable (resp., strongly \mathbb{D}^d -stable) and p(0) = 1. Question: Is it always possible to write

$$p = \det(I - KZ_n), \quad Z_n = \bigoplus_{r=1}^d z_r I_{n_r},$$

where $n = (n_1, \ldots, n_d)$, $n_r = \deg_r p$, $r = 1, \ldots, d$, $K \in \mathbb{C}^{|n| \times |n|}$, $|n| = n_1 + \cdots + n_d$, and $||K|| \le 1$ (resp., ||K|| < 1)? Answer: **YES** in some special cases; e.g., when *p* is linear, $d=2: \ p\in \mathbb{C}[z_1,z_2]$ is \mathbb{D}^2 -stable (resp., strongly \mathbb{D}^2 -stable) and p(0)=1 iff

$$p = \det(I - KZ_n), \quad Z_n = z_1 I_{n_1} \oplus z_2 I_{n_2},$$

where $n = (n_1, n_2)$, $n_r = \deg_r p$, r = 1, 2, $K \in \mathbb{C}^{(n_1+n_2)\times(n_1+n_2)}$, and $||K|| \le 1$ (resp., ||K|| < 1) [Kummert, 1989], [Grinshpan, K-V, Vinnikov, Woerdeman, 2016].

d > 2: Let $p \in \mathbb{C}[z_1, \ldots, z_d]$ be \mathbb{D}^d -stable (resp., strongly \mathbb{D}^d -stable) and p(0) = 1. Question: Is it always possible to write

$$p = \det(I - KZ_n), \quad Z_n = \bigoplus_{r=1}^d z_r I_{n_r},$$

where $n = (n_1, ..., n_d)$, $n_r = \deg_r p$, r = 1, ..., d, $K \in \mathbb{C}^{|n| \times |n|}$, $|n| = n_1 + \cdots + n_d$, and $||K|| \le 1$ (resp., ||K|| < 1)?

Answer: **YES** in some special cases; e.g., when p is linear, **NO** in general [Grinshpan, K-V, Woerdeman, 2013].

Relax.

(ロ)、(型)、(E)、(E)、 E) の(の)

Answer: **YES** in the strongly stable case and for more general domains!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Answer: **YES** in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$\begin{split} \mathcal{B} &:= \mathbb{B}^{\ell_1 \times m_1} \times \cdots \times \mathbb{B}^{\ell_k \times m_k} \\ &= \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in \mathbb{C}^{\ell_1 \times m_1} \times \cdots \times \mathbb{C}^{\ell_k \times m_k} \\ &: \|Z^{(r)}\| < 1, \ r = 1, \dots, k \Big\}. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) のQの

Answer: **YES** in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$\begin{split} \mathcal{B} &:= \mathbb{B}^{\ell_1 \times m_1} \times \cdots \times \mathbb{B}^{\ell_k \times m_k} \\ &= \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in \mathbb{C}^{\ell_1 \times m_1} \times \cdots \times \mathbb{C}^{\ell_k \times m_k} \\ &: \|Z^{(r)}\| < 1, \ r = 1, \dots, k \Big\}. \end{split}$$

Here the *d* variables are matrix entries $z_{ij}^{(r)}$, and $d = \sum_{r=1}^{k} \ell_r m_r$. Important special cases:

Answer: **YES** in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$\begin{split} \mathcal{B} &:= \mathbb{B}^{\ell_1 \times m_1} \times \cdots \times \mathbb{B}^{\ell_k \times m_k} \\ &= \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in \mathbb{C}^{\ell_1 \times m_1} \times \cdots \times \mathbb{C}^{\ell_k \times m_k} \\ &: \|Z^{(r)}\| < 1, \ r = 1, \dots, k \Big\}. \end{split}$$

Here the *d* variables are matrix entries $z_{ij}^{(r)}$, and $d = \sum_{r=1}^{k} \ell_r m_r$. Important special cases:

▶
$$k = d$$
, $\ell_r = m_r = 1$, $r = 1, \ldots, d$: $\mathcal{B} = \mathbb{D}^d$ (unit polydisk).

Answer: **YES** in the strongly stable case and for more general domains!

Consider a unit matrix polyball

$$\begin{split} \mathcal{B} &:= \mathbb{B}^{\ell_1 \times m_1} \times \cdots \times \mathbb{B}^{\ell_k \times m_k} \\ &= \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in \mathbb{C}^{\ell_1 \times m_1} \times \cdots \times \mathbb{C}^{\ell_k \times m_k} \\ &: \|Z^{(r)}\| < 1, \ r = 1, \dots, k \Big\}. \end{split}$$

Here the *d* variables are matrix entries $z_{ij}^{(r)}$, and $d = \sum_{r=1}^{k} \ell_r m_r$. Important special cases:

▶
$$k = d$$
, $\ell_r = m_r = 1$, $r = 1, \ldots, d$: $\mathcal{B} = \mathbb{D}^d$ (unit polydisk).

Theorem (Main)

Let $p = \mathbb{C}[z_{ij}^{(r)}: r = 1, ..., k, i = 1, ..., \ell_r, j = 1, ..., m_r]$, be strongly \mathcal{B} -stable, with p(0) = 1. Then there exist

 $n=(n_1,\ldots,n_k)\in\mathbb{Z}_+^k$ and $K\in\mathbb{C}_{r=1}^{\sum\limits_{r=1}^km_rn_r imes\sum\limits_{r=1}^k\ell_rn_r}$, $\|K\|<1$, so that

$$p = \det(I - KZ_n), \qquad Z_n = \bigoplus_{r=1}^{\kappa} (Z^{(r)} \otimes I_{n_r}).$$

Theorem (Main) Let $p = \mathbb{C}[z_{ij}^{(r)}: r = 1, ..., k, i = 1, ..., \ell_r, j = 1, ..., m_r]$, be strongly \mathcal{B} -stable, with p(0) = 1. Then there exist $n = (n_1, ..., n_k) \in \mathbb{Z}_+^k$ and $K \in \mathbb{C}_{r=1}^{\sum_{r=1}^k m_r n_r \times \sum_{r=1}^k \ell_r n_r}$, ||K|| < 1, so that

 $n = (n_1, \dots, n_k) \in \mathbb{Z}_+$ and $n \in \mathbb{C}^{+1}$, ||n|| < 1, so that

$$p = \det(I - KZ_n), \qquad Z_n = \bigoplus_{r=1}^{\kappa} (Z^{(r)} \otimes I_{n_r}).$$

Sketch of the proof.

Theorem (Main)

Let $p = \mathbb{C}[z_{ij}^{(r)}: r = 1, ..., k, i = 1, ..., \ell_r, j = 1, ..., m_r]$, be strongly \mathcal{B} -stable, with p(0) = 1. Then there exist

 $n = (n_1, \dots, n_k) \in \mathbb{Z}_+^k$ and $K \in \mathbb{C}_{r=1}^{\sum \atop r=1}^k m_r n_r imes \sum \limits_{r=1}^k \ell_r n_r$, $\|K\| < 1$, so that

$$p = \det(I - KZ_n), \qquad Z_n = \bigoplus_{r=1}^{k} (Z^{(r)} \otimes I_{n_r}).$$

Sketch of the proof.

Step 1: Matrix-valued Hermitian Positivstellensatz. Let

$$P(w,z) = \sum_{\lambda,\mu} P_{\lambda\mu} w^{\lambda} z^{\mu} \in \mathbb{C}^{\gamma imes \gamma}[w,z],$$

where $w = (w_1, \ldots, w_d)$, $z = (z_1, \ldots, z_d)$, $w^{\lambda} = w_1^{\lambda_1} \cdots w_d^{\lambda_d}$, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Theorem (Main) Let $p = \mathbb{C}[z_{ii}^{(r)}: r = 1, ..., k, i = 1, ..., \ell_r, j = 1, ..., m_r]$, be

strongly \mathcal{B} -stable, with p(0) = 1. Then there exist

 $n = (n_1, \dots, n_k) \in \mathbb{Z}_+^k$ and $K \in \mathbb{C}_{r=1}^{\sum \atop r=1}^k m_r n_r imes \sum \limits_{r=1}^k \ell_r n_r$, $\|K\| < 1$, so that

$$p = \det(I - KZ_n), \qquad Z_n = \bigoplus_{r=1}^{k} (Z^{(r)} \otimes I_{n_r}).$$

Sketch of the proof.

Step 1: Matrix-valued Hermitian Positivstellensatz. Let

$$P(w,z) = \sum_{\lambda,\mu} P_{\lambda\mu} w^{\lambda} z^{\mu} \in \mathbb{C}^{\gamma imes \gamma}[w,z],$$

where $w = (w_1, \ldots, w_d)$, $z = (z_1, \ldots, z_d)$, $w^{\lambda} = w_1^{\lambda_1} \cdots w_d^{\lambda_d}$, etc. Define

$$\mathcal{P}(T^*,T) := \sum_{\lambda,\mu} \mathcal{P}_{\lambda\mu} \otimes T^{*\lambda} T^{\mu},$$

where $T = (T_1, ..., T_d)$ is a *d*-tuple of commuting bounded operators on a Hilbert space.

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w, z) = P(w, z)$.

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w,z) = P(w,z)$.

We will say that $\mathcal{M} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w, z) = P(w, z)$.

We will say that $\mathcal{M} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1.
$$\mathcal{M}_{\gamma} + \mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \ \gamma \in \mathbb{N}.$$

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w, z) = P(w, z)$.

We will say that $\mathcal{M} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1.
$$\mathcal{M}_{\gamma} + \mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}, \ \gamma \in \mathbb{N}.$$

2. $1 \in \mathcal{M}_1.$

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w, z) = P(w, z)$.

We will say that $\mathcal{M} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1.
$$\mathcal{M}_\gamma + \mathcal{M}_\gamma \subseteq \mathcal{M}_\gamma$$
, $\gamma \in \mathbb{N}$

- 2. $1 \in M_1$.
- 3. For every $\gamma, \gamma' \in \mathbb{N}$, $P \in \mathcal{M}_{\gamma}$, and $F \in \mathbb{C}^{\gamma \times \gamma'}[z]$, one has $F^*(w)P(w, z)F(z) \in \mathcal{M}_{\gamma'}$.

$$P^*(w,z) = \sum_{\lambda,\mu} P^*_{\mu\lambda} w^\lambda z^\mu,$$

then the last property means that $P^*(w,z) = P(w,z)$.

We will say that $\mathcal{M} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$, with $\mathcal{M}_{\gamma} \subseteq \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}$ is a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$ if

1.
$$\mathcal{M}_{\gamma} + \mathcal{M}_{\gamma} \subseteq \mathcal{M}_{\gamma}$$
, $\gamma \in \mathbb{N}$

- 2. $1 \in M_1$.
- 3. For every $\gamma, \gamma' \in \mathbb{N}$, $P \in \mathcal{M}_{\gamma}$, and $F \in \mathbb{C}^{\gamma \times \gamma'}[z]$, one has $F^*(w)P(w, z)F(z) \in \mathcal{M}_{\gamma'}$.

This generalizes the notion of a Hermitian quadratic module over $\mathbb{C}[z]$, where (1)–(3) hold with $\gamma = \gamma' = 1$ only.

1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}, I_{\gamma} \in \mathcal{M}_{\gamma};$

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. For each γ , \mathcal{M}_{γ} is a convex cone.

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. For each γ , \mathcal{M}_{γ} is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.
- 3. For each γ , \mathcal{M}_{γ} is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.
- 3. For each γ , \mathcal{M}_{γ} is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:

(i) For every $\gamma \in \mathbb{N}$, I_{γ} is an algebraic interior point of \mathcal{M}_{γ} , i.e., $\mathbb{R}I_{\gamma} + \mathcal{M}_{\gamma} = \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}.$

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.
- 3. For each γ , \mathcal{M}_{γ} is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:

(i) For every $\gamma \in \mathbb{N}$, I_{γ} is an algebraic interior point of \mathcal{M}_{γ} , i.e., $\mathbb{R}I_{\gamma} + \mathcal{M}_{\gamma} = \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}.$

(ii) 1 is an algebraic interior point of \mathcal{M}_1 , i.e., $\mathbb{R} + \mathcal{M}_1 = \mathbb{C}[w, z]_h.$
Observations

- 1. \mathcal{M} respects direct sums, i.e., $\mathcal{M}_{\gamma} \oplus \mathcal{M}_{\gamma'} \subseteq \mathcal{M}_{\gamma+\gamma'}$.
- 2. $0_{\gamma \times \gamma}$, $I_{\gamma} \in \mathcal{M}_{\gamma}$; moreover, $A \in \mathcal{M}_{\gamma}$ if $A \in \mathbb{C}^{\gamma \times \gamma}$ is such that $A = A^* \ge 0$.
- 3. For each γ , \mathcal{M}_{γ} is a convex cone.

The following is a generalization of a lemma from [Putinar, Scheiderer, 2014].

Lemma

Let \mathcal{M} be a matrix system of Hermitian quadratic modules over $\mathbb{C}[z]$. TFAE:

(i) For every $\gamma \in \mathbb{N}$, I_{γ} is an algebraic interior point of \mathcal{M}_{γ} , i.e., $\mathbb{R}I_{\gamma} + \mathcal{M}_{\gamma} = \mathbb{C}^{\gamma \times \gamma}[w, z]_{h}.$

(ii) 1 is an algebraic interior point of \mathcal{M}_1 , i.e., $\mathbb{R} + \mathcal{M}_1 = \mathbb{C}[w, z]_h.$

(iii) For every i = 1, ..., d, one has $-w_i z_i \in \mathbb{R} + \mathcal{M}_1$.

A matrix system $\mathcal{M} = {\mathcal{M}_{\gamma}}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)–(iii) in the Lemma is called *Archimedean*.

A matrix system $\mathcal{M} = {\mathcal{M}_{\gamma}}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)–(iii) in the Lemma is called *Archimedean*.

Starting with polynomials $P_j \in \mathbb{C}^{\gamma_j \times \gamma_j}[w, z]_h$, we introduce the sets \mathcal{M}_{γ} , $\gamma \in \mathbb{N}$, consisting of polynomials $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]_h$ for which there exist $H_j \in \mathbb{C}^{\gamma_j n_j \times \gamma}[z]$, for some $n_j \in \mathbb{N}$, $j = 0, \ldots, k$, such that

$$P(w,z) = H_0^*(w)H_0(z) + \sum_{j=1}^k H_j^*(w)(P_j(w,z) \otimes I_{n_j})H_j(z).$$

Here $\gamma_0 = 1$.

A matrix system $\mathcal{M} = {\mathcal{M}_{\gamma}}_{\gamma \in \mathbb{N}}$ of Hermitian quadratic modules over $\mathbb{C}[z]$ that satisfies any (and hence all) of properties (i)–(iii) in the Lemma is called *Archimedean*.

Starting with polynomials $P_j \in \mathbb{C}^{\gamma_j \times \gamma_j}[w, z]_h$, we introduce the sets \mathcal{M}_{γ} , $\gamma \in \mathbb{N}$, consisting of polynomials $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]_h$ for which there exist $H_j \in \mathbb{C}^{\gamma_j n_j \times \gamma}[z]$, for some $n_j \in \mathbb{N}$, $j = 0, \ldots, k$, such that

$$P(w,z) = H_0^*(w)H_0(z) + \sum_{j=1}^k H_j^*(w)(P_j(w,z) \otimes I_{n_j})H_j(z).$$

Here $\gamma_0 = 1$. We also assume that there exists a constant c > 0such that $c^2 - w_i z_i \in \mathcal{M}_1$ for every $i = 1, \ldots, d$. Then $\mathcal{M} = \mathcal{M}_{P_1,\ldots,P_k} = \{\mathcal{M}_{\gamma}\}_{\gamma \in \mathbb{N}}$ is an Archimedean matrix system of Hermitian quadratic modules generated by P_1, \ldots, P_k . The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

Theorem

Under the assumptions above, let $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]$ be such that for every d-tuple $T = (T_1, \ldots, T_d)$ of Hilbert space operators satisfying $P_j(T^*, T) \ge 0$, $j = 1, \ldots, k$, we have that $P(T^*, T) > 0$. Then $P \in \mathcal{M}_{\gamma}$.

The following theorem is a matrix-valued generalization of the Hermitian Positivestellensatz [Putinar, 2006], [Helton, Putinar, 2007].

Theorem

Under the assumptions above, let $P \in \mathbb{C}^{\gamma \times \gamma}[w, z]$ be such that for every d-tuple $T = (T_1, \ldots, T_d)$ of Hilbert space operators satisfying $P_j(T^*, T) \ge 0$, $j = 1, \ldots, k$, we have that $P(T^*, T) > 0$. Then $P \in \mathcal{M}_{\gamma}$.

The proof extends the one from [Helton, Putinar, 2007]. It uses the Minkowski–Eidelheit–Kakutani separation theorem and a special construction of T.

Let $\mathcal{T}_{\mathbf{P}}$ be the set of *d*-tuples \mathcal{T} of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(\mathcal{T})\| < 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathcal{T}_{\mathbf{P}}$ be the set of *d*-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\| < 1$. For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines F(T) by means of Taylor's functional calculus.

Let $\mathcal{T}_{\mathbf{P}}$ be the set of *d*-tuples \mathcal{T} of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(\mathcal{T})\| < 1$.

For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines F(T) by means of Taylor's functional calculus. The associated Agler norm is defined by

$$\|F\|_{\mathcal{A},\mathbf{P}} = \sup_{T\in\mathcal{T}_{\mathbf{P}}} \|F(T)\|.$$

Let $\mathcal{T}_{\mathbf{P}}$ be the set of *d*-tuples T of commuting bounded operators on a Hilbert space satisfying $\|\mathbf{P}(T)\| < 1$.

For $T \in \mathcal{T}_{\mathbf{P}}$, the Taylor joint spectrum $\sigma(T)$ lies in $\mathcal{D}_{\mathbf{P}}$, and therefore for an operator-valued function F holomorphic on $\mathcal{D}_{\mathbf{P}}$ one defines F(T) by means of Taylor's functional calculus. The associated Agler norm is defined by

$$\|F\|_{\mathcal{A},\mathbf{P}} = \sup_{T\in\mathcal{T}_{\mathbf{P}}} \|F(T)\|.$$

We say that F belongs to the *Schur–Agler class* $SA_{\mathbf{P}}(\mathcal{U}, \mathcal{Y})$ associated with \mathbf{P} , if $F \colon \mathcal{D}_{\mathbf{P}} \to \mathcal{L}(\mathcal{U}, \mathcal{Y})$ is holomorphic and $\|F\|_{\mathcal{A},\mathbf{P}} \leq 1$.

By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004], $F \in S\mathcal{A}_{\mathbf{P}}(\mathcal{U}, \mathcal{Y})$ iff there exist a Hilbert space \mathcal{X} and a unitary colligation

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} : (\mathbb{C}^m \otimes \mathcal{X}) \oplus \mathcal{U} \to (\mathbb{C}^\ell \otimes \mathcal{X}) \oplus \mathcal{Y}$$

such that

$$F(z) = D + C(\mathbf{P}(z) \otimes I_{\mathcal{X}}) \Big(I - A(\mathbf{P}(z) \otimes I_{\mathcal{X}}) \Big)^{-1} B.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

By [Ambrozie, Timotin, 2003] and [Ball, Bolotnikov, 2004], $F \in S\mathcal{A}_{\mathbf{P}}(\mathcal{U}, \mathcal{Y})$ iff there exist a Hilbert space \mathcal{X} and a unitary colligation

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} : (\mathbb{C}^m \otimes \mathcal{X}) \oplus \mathcal{U} \to (\mathbb{C}^\ell \otimes \mathcal{X}) \oplus \mathcal{Y}$$

such that

$$F(z) = D + C(\mathbf{P}(z) \otimes I_{\mathcal{X}}) \Big(I - A(\mathbf{P}(z) \otimes I_{\mathcal{X}}) \Big)^{-1} B.$$

This generalizes [Agler, 1990] from the case $\mathbf{P} = \text{diag}[z_1, \dots, z_d]$ $\mathcal{D}_{\mathbf{P}} = \mathbb{D}^d$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem
Let
$$\mathbf{P} = \bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$$
, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_r \times m_r}[z]$ and
 $P_r(w, z) = I_{m_r} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

satisfy the Archimedean condition.

Theorem Let $\mathbf{P} = \bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_r \times m_r}[z]$ and

$$P_r(w,z) = I_{m_r} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)$$

satisfy the Archimedean condition. Let $F = QR^{-1}$ be a rational $\alpha \times \beta$ matrix-valued function which is regular on $\overline{\mathcal{D}}_{\mathbf{P}}$ and satisfies $\|F\|_{\mathcal{A},\mathbf{P}} < 1$.

Theorem Let $\mathbf{P} = \bigoplus_{r=1}^{k} \mathbf{P}^{(r)}$, where $\mathbf{P}^{(r)} \in \mathbb{C}^{\ell_r \times m_r}[z]$ and

$$P_r(w,z) = I_{m_r} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)$$

satisfy the Archimedean condition. Let $F = QR^{-1}$ be a rational $\alpha \times \beta$ matrix-valued function which is regular on $\overline{D}\mathbf{p}$ and satisfies $\|F\|_{\mathcal{A},\mathbf{P}} < 1$. Then there exist $n = (n_1, \ldots, n_k) \in \mathbb{Z}_+^k$ and a contraction colligation matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ of size $(\sum_{r=1}^k m_r n_r + \alpha) \times (\sum_{r=1}^k \ell_r n_r + \beta)$ such that

$$F = D + C\mathbf{P}_n(I - A\mathbf{P}_n)^{-1}B, \qquad \mathbf{P}_n = \bigoplus_{r=1}^{k} (\mathbf{P}^{(r)} \otimes I_{n_r}).$$

L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$R^{*}(w)R(z) - Q^{*}(w)Q(z) = H^{*}_{0}(w)H_{0}(z) + \sum_{j=1}^{k} H^{*}_{j}(w)\Big((I_{m_{r}} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)) \otimes I_{n_{j}}\Big)H_{j}(z),$$

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$R^{*}(w)R(z) - Q^{*}(w)Q(z) = H^{*}_{0}(w)H_{0}(z) + \sum_{j=1}^{k} H^{*}_{j}(w)\Big((I_{m_{r}} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)) \otimes I_{n_{j}}\Big)H_{j}(z),$$

and then

$$I_{eta} - F^*(w)F(z) = G_0^*(w)G_0(z) + \sum_{j=1}^k G_j^*(w) \Big((I_{m_r} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)) \otimes I_{n_j} \Big) G_j(z).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The proof uses the matrix-valued Hermitian Nullstellensatz which produces a decomposition

$$\begin{aligned} R^*(w)R(z) - Q^*(w)Q(z) &= H_0^*(w)H_0(z) \\ &+ \sum_{j=1}^k H_j^*(w) \Big((I_{m_r} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)) \otimes I_{n_j} \Big) H_j(z), \end{aligned}$$

and then

$$I_{\beta} - F^{*}(w)F(z) = G_{0}^{*}(w)G_{0}(z) + \sum_{j=1}^{k} G_{j}^{*}(w)\Big((I_{m_{r}} - \mathbf{P}^{(r)*}(w)\mathbf{P}^{(r)}(z)) \otimes I_{n_{j}}\Big)G_{j}(z).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Then a lurking contraction argument is applied to construct a colligation...

In a special case, when $\mathbf{P} = \mathbf{Z} = \bigoplus_{r=1}^{k} Z^{(r)}$, one has $\mathcal{D}_{\mathbf{P}} = \mathcal{B}$, the Archimedean condition holds, and

$$F = D + CZ_n(I - AZ_n)^{-1}B, \qquad \mathbf{Z}_n = \bigoplus_{r=1}^k (Z^{(r)} \otimes I_{n_r}).$$

In a special case, when $\mathbf{P} = \mathbf{Z} = \bigoplus_{r=1}^{k} Z^{(r)}$, one has $\mathcal{D}_{\mathbf{P}} = \mathcal{B}$, the Archimedean condition holds, and

$$F = D + CZ_n(I - AZ_n)^{-1}B, \qquad \mathbf{Z}_n = \bigoplus_{r=1}^{\kappa} (Z^{(r)} \otimes I_{n_r}).$$

١.

(日) (日) (日) (日) (日) (日) (日) (日)

Now we are going back to our main theorem...

Since p is strongly B-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since p is strongly B-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1. Thus the rational function g = 1/p is regular on $\rho \overline{B}$, and g_{ρ} defined by $g_{\rho}(z) = g(\rho z)$ is regular on \overline{B} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since p is strongly B-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1. Thus the rational function g = 1/p is regular on $\rho \overline{B}$, and g_{ρ} defined by $g_{\rho}(z) = g(\rho z)$ is regular on \overline{B} . It follows that $||g_{\rho}||_{\mathcal{A},Z} < \infty$, and we can find a constant c > 0 so that $||cg_{\rho}||_{\mathcal{A},Z} < 1$.

Since *p* is strongly *B*-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1. Thus the rational function g = 1/p is regular on $\rho \overline{B}$, and g_{ρ} defined by $g_{\rho}(z) = g(\rho z)$ is regular on \overline{B} . It follows that $||g_{\rho}||_{\mathcal{A},Z} < \infty$, and we can find a constant c > 0 so that $||cg_{\rho}||_{\mathcal{A},Z} < 1$. We can write a contractive realization for $F = cg_{\rho}$:

Since *p* is strongly *B*-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1. Thus the rational function g = 1/p is regular on $\rho \overline{B}$, and g_{ρ} defined by $g_{\rho}(z) = g(\rho z)$ is regular on \overline{B} . It follows that $||g_{\rho}||_{\mathcal{A},Z} < \infty$, and we can find a constant c > 0 so that $||cg_{\rho}||_{\mathcal{A},Z} < 1$. We can write a contractive realization for $F = cg_{\rho}$:

$$cg_{
ho}=D+CZ_n(I-AZ_n)^{-1}B_{
ho}$$

Since p is strongly B-stable, it has no zeros in $\rho \overline{B}$ for some $\rho > 1$ sufficiently close to 1. Thus the rational function g = 1/p is regular on $\rho \overline{B}$, and g_{ρ} defined by $g_{\rho}(z) = g(\rho z)$ is regular on \overline{B} . It follows that $||g_{\rho}||_{\mathcal{A},Z} < \infty$, and we can find a constant c > 0 so that $||cg_{\rho}||_{\mathcal{A},Z} < 1$. We can write a contractive realization for $F = cg_{\rho}$:

$$cg_{
ho}=D+CZ_n(I-AZ_n)^{-1}B.$$

Therefore

$$cg = D + C(\rho^{-1}Z_n)(I - A(\rho^{-1}Z_n))^{-1}B = D + C'Z_n(I - A'Z_n)^{-1}B,$$

where $C' = \rho^{-1}C$ and $A' = \rho^{-1}A$ are strict contractions, and $\begin{bmatrix} A' & B \\ C' & D \end{bmatrix}$ is a contraction.

Step 3: NC lifting. Next we lift the rational function *cg* to a nc rational expression using the same realization formula,

$$R_0 = D + C' z_n (I - A' z_n))^{-1} B,$$

now with $z_n = \bigoplus_{r=1}^k (z^{(r)} \otimes I_{n_r})$ and the entries $z_{ij}^{(r)}$ of matrices $z^{(r)}$ being nc indeterminates, r = 1, ..., k, $i = 1, ..., \ell_r$, $j = 1, ..., m_r$.

Step 3: NC lifting. Next we lift the rational function *cg* to a nc rational expression using the same realization formula,

$$R_0 = D + C'z_n(I - A'z_n))^{-1}B,$$

now with $z_n = \bigoplus_{r=1}^k (z^{(r)} \otimes I_{n_r})$ and the entries $z_{ij}^{(r)}$ of matrices $z^{(r)}$ being nc indeterminates, $r = 1, \ldots, k$, $i = 1, \ldots, \ell_r$, $j = 1, \ldots, m_r$. This expression is the *transfer function of a dissipative structured noncommutative multidimensional linear system* of [Ball, Groenewald, and Malakorn, 2006].

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\begin{bmatrix} A_{\min} & B_{\min} \\ C_{\min} & D_{\min} \end{bmatrix}$, i.e., the one with minimal possible $n_r = (n_r)_{\min}$, $r = 1, \ldots, k$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\begin{bmatrix} A_{\min} & B_{\min} \\ C_{\min} & D_{\min} \end{bmatrix}$, i.e., the one with minimal possible $n_r = (n_r)_{\min}$, $r = 1, \ldots, k$. The colligation matrix is still contractive and such that $||A_{\min}|| < 1$ and $||C_{\min}|| < 1$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\begin{bmatrix} A_{\min} & B_{\min} \\ C_{\min} & D_{\min} \end{bmatrix}$, i.e., the one with minimal possible $n_r = (n_r)_{\min}$, $r = 1, \ldots, k$. The colligation matrix is still contractive and such that $||A_{\min}|| < 1$ and $||C_{\min}|| < 1$. Moreover, the corresponding transfer function

$$R_1 = D_{\min} + C_{\min} z_{n_{\min}} \left(I - A_{\min} z_{n_{\min}} \right)^{-1} B_{\min}$$

is equivalent to R_0 .

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\begin{bmatrix} A_{\min} & B_{\min} \\ C_{\min} & D_{\min} \end{bmatrix}$, i.e., the one with minimal possible $n_r = (n_r)_{\min}$, $r = 1, \ldots, k$. The colligation matrix is still contractive and such that $||A_{\min}|| < 1$ and $||C_{\min}|| < 1$. Moreover, the corresponding transfer function

$$R_1 = D_{\min} + C_{\min} z_{n_{\min}} \left(I - A_{\min} z_{n_{\min}} \right)^{-1} B_{\min}$$

is equivalent to R_0 . That is, when we replace the variables $z_{ij}^{(r)}$ by $s \times s$ matrices, the values of R_1 and R_0 coincide on a Zariski dense set of $(\mathbb{C}^{s \times s})^d$, for every $s \in \mathbb{N}$.

Step 4: Minimal compression. Using the result from [Ball, Groenewald, and Malakorn, 2005], one can compress the given structured noncommutative multidimensional noncommutative linear system to a minimal one associated with the colligation matrix $\begin{bmatrix} A_{\min} & B_{\min} \\ C_{\min} & D_{\min} \end{bmatrix}$, i.e., the one with minimal possible $n_r = (n_r)_{\min}$, $r = 1, \ldots, k$. The colligation matrix is still contractive and such that $||A_{\min}|| < 1$ and $||C_{\min}|| < 1$. Moreover, the corresponding transfer function

$$R_1 = D_{\min} + C_{\min} z_{n_{\min}} \left(I - A_{\min} z_{n_{\min}} \right)^{-1} B_{\min}$$

is equivalent to R_0 . That is, when we replace the variables $z_{ij}^{(r)}$ by $s \times s$ matrices, the values of R_1 and R_0 coincide on a Zariski dense set of $(\mathbb{C}^{s \times s})^d$, for every $s \in \mathbb{N}$. In other words, R_1 and R_0 represent the same rational nc function \mathfrak{R} [K-V, Vinnikov, 2009].

Step 5: Inversion. Since p(0) = 1, we have

$$D_{\min}=D=cg(0)=c/p(0)=c\neq 0.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>
Step 5: Inversion. Since p(0) = 1, we have

$$D_{\min}=D=cg(0)=c/p(0)=c\neq 0.$$

By [BGM, 2005],

$$R_1^{-1} = D_{\min}^{\times} + C_{\min}^{\times} z_n (I - A_{\min}^{\times} z_n)^{-1} B_{\min}^{\times},$$

where

$$\begin{bmatrix} A_{\min}^{\times} & B_{\min}^{\times} \\ C_{\min}^{\times} & D_{\min}^{\times} \end{bmatrix} = \begin{bmatrix} A_{\min} - B_{\min} D_{\min}^{-1} C_{\min} & B_{\min} D_{\min}^{-1} \\ -D_{\min}^{-1} C_{\min} & D_{\min}^{-1} \end{bmatrix}.$$

Step 5: Inversion. Since p(0) = 1, we have

$$D_{\min}=D=cg(0)=c/p(0)=c\neq 0.$$

By [BGM, 2005],

$$R_1^{-1} = D_{\min}^{\times} + C_{\min}^{\times} z_n (I - A_{\min}^{\times} z_n)^{-1} B_{\min}^{\times},$$

where

$$\begin{bmatrix} A_{\min}^{\times} & B_{\min}^{\times} \\ C_{\min}^{\times} & D_{\min}^{\times} \end{bmatrix} = \begin{bmatrix} A_{\min} - B_{\min} D_{\min}^{-1} C_{\min} & B_{\min} D_{\min}^{-1} \\ -D_{\min}^{-1} C_{\min} & D_{\min}^{-1} \end{bmatrix}.$$

Moreover, the realization of R_1^{-1} is minimal.

Step 6: NC singularities theorem. The *domain* of a scalar or matrix-valued nc rational expression R, dom R, consists of d-tuples Z of $s \times s$ matrices, s = 1, 2, ..., for which all the matrix inversions in R are well-defined, so that R(Z) makes sense.

・ロト・日本・モート モー うへぐ

$$\operatorname{\mathsf{dom}} \mathfrak{R} = igcup_{R\in\mathfrak{R}} \operatorname{\mathsf{dom}} R.$$

$$\operatorname{\mathsf{dom}}\nolimits\mathfrak{R}=\bigcup_{R\in\mathfrak{R}}\operatorname{\mathsf{dom}}\nolimits R.$$

Theorem

Let \Re be an $\alpha\times\beta$ matrix-valued nc rational function, with a minimal realization

$$R = D + Cz_n(I - Az_n)^{-1}B,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\operatorname{\mathsf{dom}}\nolimits\mathfrak{R}=\bigcup_{R\in\mathfrak{R}}\operatorname{\mathsf{dom}}\nolimits R.$$

Theorem

Let \Re be an $\alpha\times\beta$ matrix-valued nc rational function, with a minimal realization

$$R=D+Cz_n(I-Az_n)^{-1}B,$$

Then

dom
$$\mathfrak{R} = \operatorname{dom} R = \operatorname{dom} \left((I - Az_n)^{-1} \right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\operatorname{\mathsf{dom}}\nolimits\mathfrak{R}=\bigcup_{R\in\mathfrak{R}}\operatorname{\mathsf{dom}}\nolimits R.$$

Theorem

Let \Re be an $\alpha\times\beta$ matrix-valued nc rational function, with a minimal realization

$$R=D+Cz_n(I-Az_n)^{-1}B,$$

Then

dom
$$\mathfrak{R} = \operatorname{dom} R = \operatorname{dom} \left((I - Az_n)^{-1} \right).$$

This generalizes an earlier result [K-V, Vinnikov, 2009] for $\mathbb{B}^d_{\mathbb{B}}$ to $\mathcal{B}_{\mathbb{C}}$.

In other words, the singularity set of ${\mathfrak R}$ is

$$\begin{split} & \prod_{s=1}^{\infty} \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in (\mathbb{C}^{s \times s})^{\ell_1 \times m_1} \times \dots \times (\mathbb{C}^{s \times s})^{\ell_k \times m_k} \\ & \cong (\mathbb{C}^{\ell_1 \times m_1} \times \dots \times \mathbb{C}^{\ell_k \times m_k}) \otimes \mathbb{C}^{s \times s} \colon \det(I - A \odot Z_n) = 0 \Big\}, \end{split}$$

In other words, the singularity set of \mathfrak{R} is

$$\begin{split} & \prod_{s=1}^{\infty} \Big\{ Z = (Z^{(1)}, \dots, Z^{(k)}) \in (\mathbb{C}^{s \times s})^{\ell_1 \times m_1} \times \dots \times (\mathbb{C}^{s \times s})^{\ell_k \times m_k} \\ & \cong (\mathbb{C}^{\ell_1 \times m_1} \times \dots \times \mathbb{C}^{\ell_k \times m_k}) \otimes \mathbb{C}^{s \times s} \colon \det(I - A \odot Z_n) = 0 \Big\}, \end{split}$$

where $A \odot Z_n \in \mathbb{C}^{\sum_{r=1}^k m_r n_r s} \times \sum_{r=1}^k m_r n_r s}$ is a block $\sum_{r=1}^k m_r \times \sum_{r=1}^k m_r$ matrix with blocks

$$(A \odot Z_n)_{ij}^{(rr')} = \sum_{\kappa=1}^{\ell_{r'}} A_{i\kappa}^{(rr')} \otimes Z_{\kappa j}^{(r')} \in \mathbb{C}^{n_r \times n_{r'}} \otimes \mathbb{C}^{s \times s} \cong \mathbb{C}^{n_r s \times n_{r'} s},$$

 $i = 1, \ldots, m_r, j = 1, \ldots, m_{r'}.$

Step 7: Back to commuting variables.

Corollary

The variety of singularities of a (commutative) $\alpha \times \beta$ matrix-valued rational function f which can be represented as a restriction of R from Theorem above to scalars $z_{ij}^{(r)}$ (i.e., to the case s = 1) is given by

$$\Big\{Z = (Z^{(1)}, \ldots, Z^{(k)}) \in \mathbb{C}^{\ell_1 \times m_1} \times \cdots \times \mathbb{C}^{\ell_k \times m_k} : \det(I - AZ_n) = 0\Big\},\$$

where $Z_n = \bigoplus_{r=1}^k (Z^{(r)} \otimes I_{n_r}).$

Step 8: Contractive determinantal representation. Applying Theorem to R_1^{-1}

(ロ)、(型)、(E)、(E)、 E) の(の)

Step 8: Contractive determinantal representation. Applying Theorem to R_1^{-1} and Corollary to p/c,

$$\left\{Z \in \mathbb{C}^{\ell_{r_1} \times m_{r_1}} \times \cdots \times \mathbb{C}^{\ell_{r_k} \times m_{r_k}} \colon \det(I - A_{\min}^{\times} Z_{n_{\min}}) = 0\right\} = \emptyset.$$

$$\left\{Z \in \mathbb{C}^{\ell_{r_1} \times m_{r_1}} \times \cdots \times \mathbb{C}^{\ell_{r_k} \times m_{r_k}} \colon \det(I - A_{\min}^{\times} Z_{n_{\min}}) = 0\right\} = \emptyset.$$

This is possible only if $det(I - A_{\min}^{\times} Z_{n_{\min}}) \equiv 1$.

$$\left\{Z\in \mathbb{C}^{\ell_{r_1} imes m_{r_1}} imes \cdots imes \mathbb{C}^{\ell_{r_k} imes m_{r_k}} \colon \det(I-A_{\min}^{ imes}Z_{n_{\min}})=0
ight\}=\emptyset.$$

This is possible only if $det(I - A_{\min}^{\times} Z_{n_{\min}}) \equiv 1$. Next, from

$$\begin{bmatrix} I - A_{\min} Z_{n_{\min}} & B_{\min} \\ -C_{\min} Z_{n_{\min}} & D_{\min} \end{bmatrix}$$
$$= \begin{bmatrix} I & I \\ -c_{\min} Z_{n_{\min}} (I - A_{\min} Z_{n_{\min}})^{-1} & I \end{bmatrix} \begin{bmatrix} I - A_{\min} Z_{n_{\min}} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & -A_{\min} Z_{n_{\min}} & 0 \\ 0 & D_{\min} \end{bmatrix} \begin{bmatrix} I & 0 \\ C_{\min} Z_{n_{\min}} & I \end{bmatrix}$$

$$\left\{Z\in \mathbb{C}^{\ell_{r_1} imes m_{r_1}} imes \cdots imes \mathbb{C}^{\ell_{r_k} imes m_{r_k}} \colon \det(I-A_{\min}^{ imes}Z_{n_{\min}})=0
ight\}=\emptyset.$$

This is possible only if $det(I - A_{\min}^{\times} Z_{n_{\min}}) \equiv 1$. Next, from

$$\begin{bmatrix} I - A_{\min} Z_{n_{\min}} & B_{\min} \\ -C_{\min} Z_{n_{\min}} & D_{\min} \end{bmatrix}$$
$$= \begin{bmatrix} I & I \\ -c_{\min} Z_{n_{\min}} (I - A_{\min} Z_{n_{\min}})^{-1} & I \end{bmatrix} \begin{bmatrix} I - A_{\min} Z_{n_{\min}} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & -A_{\min} Z_{n_{\min}} & 0 \\ 0 & D_{\min} \end{bmatrix} \begin{bmatrix} I & 0 \\ C_{\min}^{\times} Z_{n_{\min}} & I \end{bmatrix}$$

we obtain that

$$\det \begin{bmatrix} I - A_{\min} Z_{n_{\min}} & B_{\min} \\ -C_{\min} Z_{n_{\min}} & D_{\min} \end{bmatrix} = \frac{c}{p} \det(I - A_{\min} Z_{n_{\min}})$$
$$= D_{\min} \det(I - A_{\min}^{\times} Z_{n_{\min}}) = D_{\min} = \frac{c}{p(0)} = c.$$

It follows that $\rho = \det(I - A_{\min}Z_{n_{\min}})$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

It follows that $p = \det(I - A_{\min}Z_{n_{\min}})$. Since $\|A_{\min}\| < 1$, set $K = A_{\min}$, and then

$$p = \det(I - KZ_{n_{\min}}). \qquad \Box$$

(ロ)、(型)、(E)、(E)、 E) の(の)

It follows that $p = \det(I - A_{\min}Z_{n_{\min}})$. Since $\|A_{\min}\| < 1$, set $K = A_{\min}$, and then

$$p = \det(I - KZ_{n_{\min}}). \qquad \Box$$

Corollary

Every strongly \mathbb{D}^d -stable polynomial p is an eventual Agler denominator, i.e., there exists $n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d$, $n \ge \deg p$, such that the rational inner function

$$\frac{z^n\bar{p}(1/z)}{p(z)}$$

is in the Schur–Agler class. Here for $z = (z_1, \ldots, z_d)$ we set $1/z = (1/z_1, \ldots, 1/z_d)$, $\overline{p}(z) = \overline{p(\overline{z}_1, \ldots, \overline{z}_d)}$, and $z^n = z_1^{n_1} \cdots z_d^{n_d}$.

It follows that $p = \det(I - A_{\min}Z_{n_{\min}})$. Since $\|A_{\min}\| < 1$, set $K = A_{\min}$, and then

$$p = \det(I - KZ_{n_{\min}}). \qquad \Box$$

Corollary

Every strongly \mathbb{D}^d -stable polynomial p is an eventual Agler denominator, i.e., there exists $n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d$, $n \ge \deg p$, such that the rational inner function

$$\frac{z^n\bar{p}(1/z)}{p(z)}$$

is in the Schur–Agler class. Here for $z = (z_1, \ldots, z_d)$ we set $1/z = (1/z_1, \ldots, 1/z_d)$, $\bar{p}(z) = \overline{p(\bar{z}_1, \ldots, \bar{z}_d)}$, and $z^n = z_1^{n_1} \cdots z_d^{n_d}$. Indeed, by Main Theorem applied to \mathbb{D}^d , p has a strictly contractive determinantal representation. By [Grinshpan, K-V, Woerdeman, 2013], p is an eventual Agler denominator.

It follows that $p = \det(I - A_{\min}Z_{n_{\min}})$. Since $||A_{\min}|| < 1$, set $K = A_{\min}$, and then

$$p = \det(I - KZ_{n_{\min}}). \qquad \Box$$

Corollary

Every strongly \mathbb{D}^d -stable polynomial p is an eventual Agler denominator, i.e., there exists $n = (n_1, \ldots, n_d) \in \mathbb{Z}_+^d$, $n \ge \deg p$, such that the rational inner function

$$\frac{z^n\bar{p}(1/z)}{p(z)}$$

is in the Schur–Agler class. Here for $z = (z_1, \ldots, z_d)$ we set $1/z = (1/z_1, \ldots, 1/z_d)$, $\bar{p}(z) = p(\bar{z}_1, \ldots, \bar{z}_d)$, and $z^n = z_1^{n_1} \cdots z_d^{n_d}$. Indeed, by Main Theorem applied to \mathbb{D}^d , p has a strictly contractive determinantal representation. By [Grinshpan, K-V, Woerdeman, 2013], p is an eventual Agler denominator. Notice that $n = \deg p$ doesn't always work [GK-VW, 2013].

THANK YOU!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>