
FOCK SPACE AND KAZHDAN-LUSZTIG POLYNOMIALS

FREDERICK M. GOODMAN

1. Lecture 1: Affine Lie algebras and the Fock representation of ĝln.

1.1. The loop algebra construction. Let g be a complex reductive Lie algebra and
let L denote the algebra of Laurent polynomials in one variable L = C[t, t−1]. The loop
algebra over g is L(g) = L ⊗ g, which is a Lie algebra with the bracket

[tr ⊗ x, ts ⊗ y]0 = tr+s[x, y].(1.1)

The elements of the loop algebra may be regarded as regular rational functions on C×
with values in g. If V is a g-module, then L(V ) = L ⊗ V is an L(g)-module with the
action

(tr ⊗ x)(ts ⊗ v) = tr+sxv.(1.2)

Define a 2-cocycle on g using a non-degenerate symmetric associative bilinear form
(·, ·) on g (namely, the Killing form on the derived algebra of g, direct sum any non-
degenerate symmetric form on the center of g.) Define α : g× g −→ C by

α(x(t), y(t)) = Res0((x′(t), y(t))).(1.3)

In particular,

α(tr ⊗ x, ts ⊗ y) = δr+s,0 r (x, y).(1.4)

Then α is a 2-cocycle, namely it is antisymmetric and satisfies

α([x(t), y(t)], z(t)) + α([y(t), z(t)], x(t))

+α([z(t), x(t)], y(t)) = 0.
(1.5)

For showing this, it is helpful to use the bilinear functional on L given by

ϕ(f, g) = Res0(f ′g),

which one can show is antisymmetric and satisfies

ϕ(fg, h) + ϕ(gh, f) + ϕ(hf, g) = 0.(1.6)

Using the 2-cocycle α, one obtains a central extension ĝ′ of L(g):

0 −→ C −→ ĝ′ −→ L(g) −→ 0.(1.7)
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More explicitly,

ĝ′ = L(g)⊕ CK(1.8)

with the Lie bracket

[a(t) + λ1K, b(t) + λ2K]

= [a(t), b(t)]0 + α(a(t), b(t))K.
(1.9)

Next note that D : ĝ′ −→ ĝ′ defined by

D(a(t) + λK) = ta′(t))(1.10)

is a derivation of ĝ′, so one can make the further extension of ĝ′

ĝ = L(g)⊕ CK ⊕ CD,(1.11)

with the Lie bracket

[a(t) + λ1K + µ1D, b(t) + λ2K + µ2D]

= ([a(t), b(t)]0 + µ1tb
′(t)− µ2ta

′(t))

+α(a(t), b(t))K

(1.12)

Note that [ĝ, ĝ] = ĝ′.
Define the bilinear form on ĝ by

(tr ⊗ x+ λ1K + µ1D, t
s ⊗ y + λ2K + µ2D)

= δr+s,0(x, y) + λ1µ2 + λ2µ1.
(1.13)

Now one can check that this bilinear form non-degenerate, symmetric, and associative.

1.2. The Fermionic Fock space construction. At this point let us specialize to
g = gln or g = sln; in particular, the non-degnerate, symmetric, associative bilinear
form on g will be taken to be (x, y) = tr(xy). Let V be the vector representation of g

with basis {u1, . . . , un}. Identify L(V ) = L ⊗ V with C∞, with basis {vi : i ∈ Z}, by
the correspondence

tk ⊗ ui = v−nk+i.(1.14)

Thus for eij a matrix unit in gln,

(tr ⊗ eij)vns+µ = δjµvns−nr+i,(1.15)

so tr ⊗ eij acts on L(V ) by ∑
s

Ens−nr+i,ns+j,(1.16)

where the Eµν are matrix units in gl∞.
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The semi-infinite fermionic Fock space based on L(V ) is the subspace of
∞∧
0

L(V )

spanned by vectors

vI = vi0 ∧ vi1 ∧ vi2 ∧ · · ·(1.17)

where

i0 > ii > i2 · · · ,(1.18)

and where the set I of indices ij contains all but finitely many non-positive numbers.
The following language gives us the pleasant illusion that we are talking about physics:

for any “state” given by a vector vI , the positive indices in I label “electrons” and the
missing non-positive indices label “positrons”. Then F is the direct sum over m ∈ Z of
F (m), where F (m) has a basis of states in which the number of electrons less the nunber
of positrons is m. Let

ψm = vm ∧ vm−1 ∧ · · · .(1.19)

Then F (m) is the span of vI = vi0 ∧ vI1 ∧ · · · , where ij = m− j for j >> 0.
Since we have an action of the loop algebra L(g) on L(V ), we would like to define an

action of the loop algebra on F by

π(tr ⊗ eij)vI =
∑
s

vi0 ∧ · · · ∧ (tr ⊗ eij)vis ∧ · · · .(1.20)

The sum is finite if r 6= 0 or if i 6= j because of the finiteness condition on the vectors
vI . However, if r = 0 and i = j, then one ends up with an infinite sum. The way to
correct this is to define

π(1⊗ eii)vI = N(I, [i])vI ,(1.21)

where N(I, [i]) is number of indices j ∈ I such that j > 0 and j ≡ i (mod n), less then
number of indices j 6∈ I such that j ≤ 0 and j ≡ i (mod n). In our colorful physics
language, we consider the electrons and positrons to have one of n colors, labelled by
residue classes of integers modulo n; then N(I, [i]) is the number of [i]-colored electrons
in the state vI less the number of [i]-colored positrons.

Now it is possible to check that π is a projective representation of the loop algebra,
namely

π(a)π(b)− π(b)π(a)− π([a, b]0) = α(a, b)I.(1.22)

In fact, the essential fact to check is that

π(tr ⊗ eij)π(t−r ⊗ eji)− π(t−r ⊗ eji)π(tr ⊗ eij)
−π(1⊗ (eii − ejj) = rI.

(1.23)
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It follows that π defines a representation of the central extension ĝ′ on F , in which the
central element K acts as the identity. This representation clearly leaves each of the
spaces F (m) invariant.

The representation of ĝ′ on F (m) can be extended to a representation of ĝ. See
subsection 1.4 below for an explicit extension in the case m = 0.

Consider the usual triangular decomposition of g,

g = n
− ⊕ h⊕ n+,(1.24)

where h is the Cartan subalgebra, and n+ is the direct sum of the roots spaces for
positive roots. Then ĝ also has a triangular decomposition

ĝ = n̂
− ⊕ ĥ⊕ n̂+,(1.25)

where

ĥ = (1⊗ h)⊕ CK ⊕ CD,(1.26)

n̂+ = (1⊗ n+)⊕
∑
r<0

tr ⊗ g,(1.27)

and

n̂− = (1⊗ n−)⊕
∑
r>0

tr ⊗ g.(1.28)

Now it is easy to see that ψm is a highest weight vector, namely

π(h)ψm ∈ Cψm,(1.29)

for h ∈ h, and

π(x)ψm = 0(1.30)

for x ∈ n̂+.
One can also check that F (m) is a simple ĝln module. As a ŝln module, however, it

a direct sum of countably many simple highest weight modules; the cyclic submodule
generated by ψm is a simple highest weight ŝln module.

1.3. Generators and relations. When g is a simple complex Lie algebra of type
Xl, then the extended loop algebra ĝ constructed above is isomorphic to the affine

Kac-Moody Lie algebra of type X
(1)
l . This correspondence is discussed in Kac, Infinite

Dimensional Lie Algebras, Chapter 7.
Here I only specify the correspondence for g = sln. Let ei = ei i+1, fi = ei+1 i, and

hi = ei i−ei+1 i+1, for 1 ≤ i ≤ n−1, be the standard generators of sln. Let us also write
ei for 1 ⊗ ei and similarly for fi. Furthermore, let us put e0 = t−1 ⊗ e1n, f0 = t ⊗ en1,
and h0 = K − (e11 − enn).
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Then the set {ei, fi, hi} generates ĝ′ as a Lie algebra, and using these generators,
one can show that ĝ′ is isomorphic to the Lie algebra ĝ′(A) determined by the Cartan
matrix A of type A(1)

n .

Recall that the abelian Lie algebra ĥ has a basis

{h0, h1, . . . , hn−1, D}.
Let

{ω0, ω1, . . . , ωn−1, δ}
be the dual basis of ĥ∗.

Then one can check that ψm ∈ F (m) is a weight vector of weight ωj, where j ≡
m (mod n).

1.4. Parametrization by Young diagrams. In this subsection, I restrict attention
to the the Fock module F . There is a bijection between the basis vectors vI of F
and Young diagrams (or partitions) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 of arbitrary size. The
correspondence is given by

λ 7→ I = (λ1, λ2 − 1, λ3 − 2, . . . ),

where λ has been augmented by appending infinitely many zeros. Thus λj−j+1 = ij−1.

We now obtain formulas for the action of the generators ei, fi, hi and D of ŝln on
basis elements of F labelled by Young diagrams.

The generator fi, applied to a basis vector vI , produces new basis vectors by increasing
some index ij, whenever it is possible to increase the index ij (either j = 0 or ij−1 >
ij + 1) and when moreover ij ≡ i (mod n).

In terms of Young diagrams this translates into adding a box to the the Young
diagram in some row i with λi boxes, whenever it is possible to add a box (that is, i = 1
or λi−1 > λi) and when moreover λi + 1− i is congruent to i modulo n.

The content of a box or node in a Young diagram is its column index minus its row
index. The residue of a node is the residue modulo n of the content. The diagram λ
is said to have a removable r-node at (i, λi) if the node can be removed to obtain a
smaller Young diagram, and if the residue of the node is r. It is said to have a indent
r-node at (i, λi + 1) if the node can be added to obtain a larger Young diagram, and if
the residue of the node is r.

The prescription for the action of fi is thus

fiλ =
∑
ν

ν,(1.31)

where the sum is over all diagrams ν which can be obtained from λ by adding one node
of residue i.
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Similarly

eiλ =
∑
ν

ν,(1.32)

where the sum is over all diagrams ν which can be obtained from λ by removing one
node of residue i.

The prescription for the action of the hi is

hiλ = n(λ, i)λ,(1.33)

where n(λ, i) is the number of indent i-nodes of λ less the number of removable i-nodes.
The formula for the action of D is

Dλ = n0(λ)λ,(1.34)

where n0(λ) the total number of nodes of λ of residue 0 modulo n. (To see this, note that
D commutes with all hi and with all ei and fi for i 6= 0. However, Df0 = f0(D+1), and
De0 = e0(D− 1). It follows that D counts the number of 0-nodes of a Young diagram.)

The point of reciting these formulas here is to provide a basis for comparison for
analogous formulas for the quantum universal enveloping algebra Uv(ŝln).

(Note the formula for hiλ follows easily from hi = [ei, fi]. Consequently, for i 6= 0
one must have

n(λ, i) = N(I, [i])−N(I, [i+ 1]),(1.35)

where N(I, [i]) is defined after Equation (1.21), and I is the sequence of indices corre-
sponding to the Young diagram λ. For i = 0, one has a modified formula:

n(λ, 0) = 1 +N(I, [0])−N(I, [1]),(1.36)

One can also check these formulas directly.)

References for this lecture are:

1. V.G. Kac, Infinite Dimensional Lie Algebras.
2. V.G. Kac and A. K. Raina, Bombay Lectures On Highest Weight Representations

of Infinite Dimensional Lie Algebras .
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2. Lecture 2: The Fock representation of Uv(ŝln).

2.1. The quantum universal enveloping algebra Uv(ŝln). To describe the quantum

universal enveloping algebra Uv(ŝln) associated to ŝln, let us start with the Cartan data

for ŝln: Let ĥ be the Q-vector space with basis

{h0, h1, . . . , hn−1, D},
and let

{ω0, ω1, . . . , ωn−1, δ}
be the dual basis of ĥ∗. Also let

{α0, α1, . . . , αn−1} ⊂ ĥ∗

be the functionals (simple roots):

αi = 2ωi − ωi−1 − ωi+1 for i 6= 0, n

αn = 2ωn − ω0 − ωn−1

α0 = 2ω0 − ωn − ω1 − δ,
(2.1)

and A = [αi(hj)] be the n-by-n Cartan matrix for ŝln.
Let us first recall the presentation of the ordinary universal enveloping algebra of

ŝln by generators and relations: U(ŝln) is the associative algebra with identity over
Q,C, . . . , with generators

ei, fi, hi for 0 ≤ i ≤ n− 1 and D,

satisfying the (Serre) relations are

[h, ej] = αj(h)ej, and

[h, fj] = −αj(h)fj, for h ∈ {h0, . . . , hn−1, D};
[ei, fj] = δijhj;

e2
i ei±1 − 2eiei±1ei + eie

2
i±1 = 0, and

f2
i fi±1 − 2fifi±1fi + fif

2
i±1 = 0;

[ei, ej] = [fi, fj] = 0 if i 6= j ± 1.

(2.2)

In these relations it is understood that n+ 1 is to be read as 0 and −1 as n.
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The quantum universal enveloping algebra Uv(ŝln) is the associative algebra with
identity over Q(v), with generators

ei, fi for 0 ≤ i ≤ n− 1

and

v±h for h ∈ {h0, . . . , hn−1, D},
satisfying the (quantum Serre) relations:

vhv−h = v−hvh = 1;

vhejv
−h = vαj(h)ej, and

vhfjv
−h = v−αj(h)fj, for h ∈ {h0, . . . , hn−1, D};

[ei, fj] = δij
vhi − v−hi
v − v−1

;

e2
i ei±1 − (v + v−1)eiei±1ei + eie

2
i±1 = 0, and

f2
i fi±1 − (v + v−1)fifi±1fi + fif

2
i±1 = 0;

[ei, ej] = [fi, fj] = 0 if i 6= j ± 1.

(2.3)

The only “surprise” in these relations is the difference quotient appearing in the
expression for the commutator of an e and an f . The v + v−1 is just the v-integer

[2] =
v2 − v−2

v − v−1
; one should expect in general that integers get replaced by v-integers in

this theory.

Uv(ŝln) is a Hopf algebra; for the moment, I omit the formulas for the comultiplication
and antipode.

2.2. The Fock module F . I describe a representation of Uv(ŝln) on a v-analogue of
Fock space F . Let F be the Q(v)-vector space with a basis of Young diagrams of

arbitrary size. One can define an action of Uv(ŝln) on F by the following formulas:

fiλ =
∑
ν

vn
+(λ,ν)ν,(2.4)

where the sum is over all Young diagrams ν obtained from λ by adding one node of
residue i modulo n, and n+(λ, ν) is defined as follows: if ν is obtained from λ by adding
a node of residue i in a certain row r, then n+(λ, ν) is the number of indent i-nodes in
rows r′ < r less the number of removable i-nodes in such rows.
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eiλ =
∑
ν

vn
−(λ,ν)ν,(2.5)

where the sum is over all Young diagrams ν obtained from λ by removing one node
of residue i modulo n, and n−(λ, ν) is defined as follows: if ν is obtained from λ by
removing a node of residue i in a certain row r, then n−(λ, ν) is the number of removable
i-nodes in rows r′ > r less the number of indent i-nodes in such rows.

vhiλ = vn(λ,i)λ,(2.6)

where n(λ, i) is as before, the number of indent i-nodes of λ less the number of removable
i-nodes, and

vDλ = vn0(λ,i)λ,(2.7)

where n0(λ) the total number of nodes of λ of residue 0 modulo n, as before.
In summary, the vh for h ∈ h act diagonally in the basis of Young diagrams, and

the formulas for the eigenvalues are obtained just by exponentiating the old formulas.
The fi act as creation, or raising operators, as before, the ei as annihilation, or lowering
operators, but integer powers of the deformation variable v now enter into the formulas.

The Fock space F is again a direct sum of simple highest weight modules for Uv(ŝln).
The cyclic submodule generated by the empty Young diagram is simple with highest
weight ω0,

L(ω0) ∼= Uv(ŝln)∅(2.8)

F is a simple module for Uv(ĝln), a “slightly” larger quantum universal enveloping
algebra.

2.3. Generalities on crystal bases. One of the distinctive new features of quantum
groups is the appearance of canonical bases of modules, with many remarkable proper-
ties. In particular, Kashiwara introduced the notion of “crystal base,” which is a basis
“at v = 0” for which the action of the generators ei, fi is especially simple. There are
general existence and uniqueness theorems for crystal bases, but it remains a problem
in many cases to find explicit combinatorial parametrizations of the crystal base. Here I
give the solution of this problem for the simple integrable highest weight module L(ω0)

for Uv(ŝln), for which we have the explicit Fock space model.
First let us introduce the divided powers of the fi and ei. Let [k] denote the v-integer

[k] =
vk − v−k
v − v−1

,(2.9)
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and [k]! the v-factorial

[k]! = [k][k − 1] · · · [2][1].(2.10)

The divided powers of the fi and ei are

f
(k)
i = fki /[k]! e

(k)
i = eki /[k]!.(2.11)

Next, modified versions ẽi and f̃i of the ei and fi are introduced. For each i, consider
the unital subalgebra of Uv(ŝln) generated by ei, fi, and v±hi ; this is is isomorphic

Uv(sl2), and is denoted Uv(sl2)i. Any integrable Uv(ŝln) module M is a direct sum of
finite dimensional simple Uv(sl2)i modules, M =

⊕
Vs, and each Vs has a basis of the

form

u0, f
(1)
i u0, f

(2)
i u0, . . . , f

(m)
i u0,

where eiu0 = f
(m+1)
i u0 = 0. On each Vs, ẽi and f̃i are defined by

f̃i(f
(k)
i u0) = f

(k+1)
i u0,

ẽi(f
(k)
i u0) = f

(k−1)
i u0.

(2.12)

The linear extension of f̃i and ẽi to M is independent of the decomposition M =
⊕
Vs.

Let A ⊂ Q(v) denote the local ring of rational functions with no pole at v = 0. An

admissable A-lattice M in an integrable ŝl module M is one which is invariant under
all ẽi and f̃i. A crystal base of M is a pair (M,B) consisting of an admissable A-lattice
M and a basis B of M/vM with the crucial property: for all b ∈ B and all i,

f̃ib ∈ B ∪ {0}, and ẽib ∈ B ∪ {0},(2.13)

and furthermore,

f̃ib = b′ ⇐⇒ b = ẽib
′.(2.14)

(I omit some additional technical conditions.) The crystal graph is a colored directed
graph whose vertices are the elements of the crystal base and whose directed colored
edges

b
i→ b′(2.15)

correspond to pairs b, b′ ∈ B such that f̃ib = b′.
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2.4. The crystal base of L(ω0). As mentioned before, there are general existence and
uniqueness results for crystal bases. I now describe an explicit parametrization of the
crystal base of the Fock module F and of the simple integrable highest weight module
L(ω0) of Uv(ŝln).

Let L(F) ⊂ F be the A-span of all Young diagrams, and let

B(F) = {λ+ vL(F) : λ a Young diagram}.

Furthermore, put M = Uv(ŝln)∅ ⊆ F , the cyclic submodule generated by the empty
Young diagram, and let M = L(F) ∩M .

A Young diagram is called n-regular if it has no more than n− 1 rows of any length.
(Such diagrams arise in the representation theory of the symmetric group in positive
characteristic, the representation theory of Hecke algebras at roots of unity, the repre-
sentation theory of algebraic groups in positive characteristic.) Let

B = {λ+ vM : λ is n-regular }(2.16)

Theorem 2.1. (Misra and Miwa)

1. (L(F),B(F)) is a crystal base of F .
2. (M,B) is a crystal base of M ∼= L(ω0).

The crystal graphs have a fairly straighforward combinatorial description the details
of which I will omit. In brief,

(λ+ vM)
i→ (ν + vM)(2.17)

if, and only if, ν is obtained from λ by addition of a node of residue i satisfying an
additional combinatorial condition; for given λ, there is at most one such node. The
crystal graph B of M is the connected component of the empty diagram in the crystal
graph B(F) of F .

2.5. The global crystal base. For a simple integrable highest weight module M ,
there is in general a unique lifting of the crystal base (a basis of M/vM) to a basis
of M satisfying a self-duality condition. This lifting is called the global crystal base,
and has been shown to coincide with the canonical bases defined by Lusztig, using the
theory of perverse sheaves (whatever that might be!)

There is an involution a 7→ ā of Uv(ŝln) such that the ei and fi are self-dual, v̄ = v−1,
and (vh)− = v−h. This induces an involution on M by (a∅)− = ā∅.



12 FREDERICK M. GOODMAN

Theorem 2.2. (Kashiwara) Let (M,B) be a crystal base of the simple integrable
highest weight module M . Then there is a unique A-basis {G(b) : b ∈ B} of M
satisfying:

(G1) G(b) + vM = b; and

(G2) G(b) is self-dual.

In our context, one has

Theorem 2.3. (Kashiwara + Misra-Miwa) There is a uniqueA-basis {G(µ)} of L(F)∩
M indexed by n-regular Young diagrams µ, and satisfying:

(G1) G(µ) ≡ µ (mod vL(F)); and

(G2) G(µ) is self-dual.

2.6. Ariki’s Theorem. Consider the expansion of the elements G(µ) of the global
crystal base of

M = Uv(ŝln)∅ ⊂ F
in terms of the natural basis of F consisting of Young diagrams:

G(µ) =
∑
λ

dλ,µ(v)λ(2.18)

One has that dµµ = 1, and the remaining coeficients are in vA. Lascoux, Leclerc, and
Thibon have given an algorithm for the G(µ) which shows that in fact the dλ,µ ∈ Z[v],
and dλ,µ = 0 unless λ E µ in dominance order.

LLT conjectured (on the basis of computations) that dλ,µ(1) are decomposition num-
bers for the Hecke algebraHf (q) of type A over a field of characteristic 0, with parameter
q a primitive n-th root of unity. This remarkable result was proved by Ariki in 1996.

It was shown moreover by Varagnolo and Vasserot in 1998 that dλ,µ(v) ∈ N[v].
It remains here to indicate what is meant by the decomposition numbers for the

Hecke algebra. The Hecke algebra Hf (q) over Q is the associative algebra with a basis

{Tw : w ∈ the symmetric group Sf}
satisfying

TsiTw =

Tsiw if `(siw) = `(w) + 1

(q − 1)Tw + Tsiw if `(siw) = `(w)− 1
(2.19)

When q = 1, one obtains the group algebra of the symmetric group. When q is not a
proper root of unity, then the Hecke algebra is semisimple, and isomorphic to the group
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algebra of the symmetric group. However, when q is an n-th root of unity and f ≥ n,
then Hf (q) is not semisimple.

In this case, the simple modules Dµ are labelled by n-regular Young diagrams µ of
size f .

On the other hand, for each Young diagram of size f , there is a canonical indecom-
posible (Specht) module Sλ, which is constructed, roughly speaking, by a process of
symmetrization in the rows of λ and antisymmetrization in the columns, as for the
construction of the simple Sf modules (in characteristic 0). The Specht modules have
the same dimensions as the simple Sf modules.

The Specht module Sλ has a composition series with simple subquotients Dµ. The
decomposition number dλ,µ is the number of times Dµ appears in a composition series
for Sλ. It is known that dµµ = 1 and dλ,µ = 0 unless λ E µ.

Theorem 2.4. (Ariki)
dλ,µ(1) = dλ,µ.

Let us summarize the development described in this lecture: The basic module L(ω0)

of the quantum universal enveloping algebra Uv(ŝln) has a model based on a Fermionic
Fock space construction; the Fermionic Fock space F has a basis labelled by Young
diagrams. One can give an explicit combinatorial parametrization of the crystal base,
and global crystal base, of this module, by n-regular Young diagrams. The global
crystal base can be expanded in terms of the natural basis of F consisting of Young
diagrams:

G(µ) =
∑
λ

dλ,µ(v)λ,(2.20)

and the coefficents dλ,µ(v) lie in Z[v]. This expansion can be computed by a combinato-
rial algorithm due to Lascoux, Leclerc, and Thibon. Finally, evaluating the coefficients
dλ,µ(v) at v = 1 gives the decomposition numbers for the Hecke algebras Hf (q), where
q is an n-th root of unity.
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3. Lecture 3: Tilting modules and Kazhdan-Lusztig polynomials.

I now want to describe some aspects of the represntation theory of quantum groups
at roots of unity. Let g be a simple complex Lie algebra, and consider the quantum
universal enveloping algebra Uq(g), where the parameter q is a primitive n-th root of
unity.

This is an algebra over C or Q with generators and relations involving the Cartan
data for g. Actually, there are several possible versions for the quantum group at a root
of unity; we need to use one introduced by Lusztig which includes divided powers of
the generators eα, fα.

The algebras Uq(g) are Hopf algebras with a non-semisimple finite dimensional repre-
sentation theory. Advertisement: The representation theory is used to construct invari-
ants of 3-manifolds, topological quantum field theories. A part of the representation
theory gives the fusion in WZW conformal field theories.
Uq(g) has finite dimensional simple modules Lλ labelled by dominant integral weights

of g. It also has standard modules ∇λ which have largest semisimple submodule isomor-
phic to Lλ and co-standard modules ∆λ with largest semisimple quotient isomorphic to
Lλ.

There is a certain category of finite dimensional modules, called tilting modules, which
has proved very useful.

• Tilting modules are characterized by the existence of filtrations by ∇λ’s and by
∆µ’s.
• There is a unique indecomposable tilting module Tλ with highest weight λ.
• For g = slk, the tilting modules are characterized as direct summands of some

tensor power of the vector representation.

One has some “decomposition numbers” in this theory, namely

(Tµ : ∆λ) = (Tµ : ∇λ)

which are multiplicities of ∆λ in a ∆-filtration of Tµ, or of ∇λ in a ∇-filtration.
For g = slk and µ n-regular, it is known that

(Tµ : ∇λ) = dλ,µ = [Sλ : Dµ],

the multiplicity of the simple Hf (q) module Dµ in the Specht module Sλ. This is due
to a version of Schur-Weyl duality.

W. Soergel conjectured (and then proved at least for Lie types ADE, and probably for
all types) that the multiplicities of standard modules in indecomposable tilting modules
are given by certain parabolic, affine Kazhdan-Lusztig polynomials, evaluated at 1,

(Tµ : ∇λ) = nλ+ρ,µ+ρ(1)(3.1)
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For now, let me just say that the nλ,µ(v) are polynomials depending on two dominant
integral weights λ, µ, which are defined by some recursive combinatorial prescription.

In type A, we have, therefore, two polynomial analogues of decomposition numbers
nλ,µ(v) (Kazhdan-Lusztig) and dλ,µ(v) (from the global crystal base), with:

nλ+ρ,µ+ρ(1) = (Tµ : ∇λ) = [Sλ : Dµ] = dλ,µ(1)(3.2)

Wenzl and I have shown (by elementary combinatorics) that the two polynomial
analogues coincide:

Theorem 3.1. ( Goodman-Wenzl, Varagnolo-Vasserot)) For type A,

dλ,µ(v) = nλ+ρ,µ+ρ(v)

for µ n-regular and λ arbitrary.

We have, furthermore, given a fast algorithm, for all Lie types, for computing the
Kazhdan Lusztig polynomials nλ,µ. This algorithm is based on the algorithm of Lascoux,
Leclerc and Thibon for the dλ,µ(v), generalized to all Lie types. In type A, it is vastly
more efficient than the original LLT algorithm. For all Lie types, it is vastly more
efficient than the original recursive algorithm for the parabolic, affine Kazhadan-Lusztig
polynomials.

Here are some timing figures in type A (with a 266 mhz G-whiz G3 Macintosh): The
k in the table corresponds to slk, the n to the order of the root of unity.

k, n, µ LLT, secs. GW, secs. Soergel, secs.

4, 5, [4l, 2l, 0, 0] 13.5 1.43 5.22
4, 5, [8l, 4l, 0, 0] 2013 5.95 179
5, 6, [6l, 4l, 2l, 0, 0] 56924 8.52 6771
5, 6, [12l, 8l, 4l, 0, 0] > 3 days 50 > 3 days

3.1. Parablolic affine Kazhdan Lusztig polynomials. To describe the KL poly-
nomials, I need some usual paraphanalia of Lie theory, associated with the simple Lie
algebra g:

• R is the root lattice, P the weight lattice.
• E = R⊗Z R
• C is the Weyl chamber, and C0 its interior.
• Wf is the Weyl group
• W = Wf×nR, semidirect product of the Weyl group and n times the root lattice,

the affine Weyl group, which acts on E.
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• An alcove is a connected component of the complement in E of the union of affine
reflection hyperplanes for W . The set of all alcoves is designated by A, and the
set contained in the positive Weyl chamber by A+.
• A0 is that unique alcove in A+ which contains the origin 0 in its closure.
• S is the set of reflections in the walls of A0. Then (W ,S) is a Coxeter group.
• As for any Coxeter group, there is a Hecke algebra associated with (W ,S), denoted
H. It is the associateive Z[v, v−1] algebra with identity and a basis {Hw : w ∈ W}
satisfying:

HwHs =

Hws if `(ws) = `(w) + 1

(v−1 − v)Hw +Hws if `(ws) = `(w)− 1
(3.3)

for w ∈ W and s ∈ S ⊆ W.

The affine Weyl group acts freely and transitively on the set A of alcoves (on the
left) and also on the right by

(wA0)s = wsA0.

The Hecke algebra H has an involution determined by v 7→ v−1 and Hx 7→ (Hx−1)−1

The elements

Cs = Hs + v s ∈ S
are self-dual generators of H.

Let N = Z[v, v−1]A+. Then H acts on N (on the right) by

ACs =


As+ vA if As ∈ A+ and As Â A;

As+ v−1x if As ∈ A+ and As ≺ A;

0 if As 6∈ A+,

,(3.4)

where now the inequalities have a geometric interpretation: As Â A if As is on the
positive side of the hyperplane separating the two alcoves.

Proposition 3.2. There is a unique Z[v, v−1] basis {N̄A : A ∈ A+} of N such that

1. N̄A is self-dual.
2. N̄A =

∑
B¹A

nB,A(v)B,

where nA,A = 1, and nB,A(v) ∈ vZ[v] if B 6= A.

The nB,A(v) are the parabolic affine Kazhdan Lusztig polynomials. (Note that, for
the moment, they are parametrized by pairs of alcoves rather than pairs of dominant
integral weights.)
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The N̄A can be computed by a recursive scheme (this is the existence proof). One
has N̄A0 = NA0 . Given A 6= A0, one can choose s ∈ S such that As ∈ A+ and As ≺ A.
As a first approximation to N̄A one takes

N̄AsCs = NA +
∑
B≺A

fB,A(v)NB.

This element is self-dual, but may have coefficients with non-zero constant term. So
one corrects these coefficients by subtracting a self-dual linear combination of N̄B for
B ≺ A.

Now consider dominant integral weights µ, λ such that λ E µ and λ is in theW-orbit
Wµ. Define a+(λ) to be the unique alcove A such that λ is in the closure of A, and
A lies on the positive side of any hyperplane containing λ. (In particular if λ is in the
interior of an alcove A, then a+(λ) = A.) Then we define

nλ,µ(v) = na+(λ),a+(µ),

and
N̄µ =

∑
λ

nλ,µ(v)λ.

These are the Kazhdan-Lusztig polynomials indexed by pairs of dominant integral
weights which enter into Soergel’s theorem, and the result of Goodman-Wenzl men-
tioned before.
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