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Errata
Goodman, Algebra: Abstract and Concrete, 2nd ed.

• Page 6: Comments on the paragraph following figure 1.2.5: The
“centroid” of the square is the center of mass; it is the intersection of
the two diagonals.

Consider an axis joining two opposite vertices of the square, or
the centers of two opposite edges. The figure can be rotated by by
180 degrees (π radians) around such an axis. Such a rotation flips
the figure over the axis, exchanging top and bottom. If you flip the
figure twice over the same axis, you return it to its original position.
It would be convenient to refer to these motions as “flips”.
• Page 26: Add two properties to the list of known properties of
the integers:

1. The product of two non-zero integers is non-zero.
2. For all integers a, b, |ab| ≥ max{|a|, |b||}.

• Page 35, Exercise 1.6.3: Suppose that the natural number p > 1
has the property ...
• Page 38, last line: This shows that (d) implies (a).
• Page 49, proof of 1.8.12: Write p = anxn + an−1xn−1 + · · · + a0.
• Page 51, second line of Remark 1.8.17: . . . to produce an algo-
rithm . . .
• Page 54, exercise 1.8.5: Let h be a non-zero element of I(f, g) of
least degree.
• Page 69, Formally, a product or operation on a set G is a function
from G×G to G. For example, the operation of addition on Z is the
function on Z × Z whose value at (a, b) is a + b.
• Page 74, Exercise 1.10.9: Show that the set of affine transforma-
tions of R

n . . .
• Page 75, Before definition 1.11.1: Again, it is fruitful . . .
• The discussion of the RSA algorithm on pages 80-81 is incom-
plete. Replace Lemma 1.12.1 with the following:
Lemma 1.12.1. For all integers a and h, if h ≡ 1 (mod m), then ah ≡
a (mod n).

Proof. Write h = tm + 1. Then ah = aatm, so ah − a = a(atm − 1).
We have to show that ah − a is divisible by n.

If q does not divide a, then a is relatively prime to q, so aq−1 ≡
1 (mod q), by Fermat’s little theorem, Proposition ??. Since (q − 1)

divides tm, it follows that atm ≡ 1 (mod q); that is q divides atm−1.
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Thus, either q divides a, or q divides atm − 1, so q divides ah − a =

a(atm − 1) in any case.
Similarly, p divides ah − a. But then ah − a is divisible by both

p and q, and hence by n = pq = l.c.m.(p, q). n

Now Lemma 1.12.2 is valid without the hypothesis that a is rel-
atively prime to n. Consequently, in the paragraphs following this
lemma, we can eliminate the remark restricting a to be less than n,
and the comments about a being relatively prime to n: the proce-
dure is valid for an arbitrary integer a.
• Pages 69-70, We use the notion of a product or operation on a set
without defining it. Here is the definition: A product or operation on
a set G is a function from G×G to G. For example, addition on Z is
the function on Z × Z whose value on the pair (3, 4) is 3 + 4 = 7.
• Page 88: It would be useful to insert a discussion of the general
assocative law here.

Consider a set M with an associative operation, denoted by jux-
taposition. The operation allows us to multiply only two elements
at a time, but we can multiply three or more elements by grouping
them so that only two elements are multiplied at a time. For three
elements, there are two possible groupings,

a(bc) and (ab)c,
but these are equal by the associative law. Thus there is a well-defined
product of three elements, independent of the way in which the three
elements are grouped.

There are five ways to group four elements for multiplication,
a(b(cd)), a((bc)d), (ab)(cd), (a(bc))d, ((ab)c)d,

but by the associative law, the first two and the last two are equal.
Thus there are at most three different product of four elements:

a(bcd), , (ab)(cd), (abc)d.
Using the associative law, we see that all three are equal:

a(bcd) = a(b(cd)) = (ab)(cd) = ((ab)c)d = (abc)d.
Thus there is a well-defined product of four elements, which is in-
dependent of the way the elements are grouped for multiplication.

There are 14 ways to group five elements for multiplication; we
won’t bother to list them. Because there is a well-defined product
of four or less elements, independent of the way the elements are
grouped for multiplication, there are at most four distinct products
of five elements:

a(bcde), (ab)(cde) (abc)(de), (abcd)e.
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Using the associative law, we can show that all four products are
equal,

a(bcde) = a(b(cde)) = (ab)(cde),
etc. Thus the product of five elements at a time is well-defined, and
independent of the way that the elements are grouped for multipli-
cation.

Continuing in this way, we obtain the following general associa-
tive law:
Proposition 2.1.19. (General associative law) Let M be a set with an as-
sociative operation, M × M −→ M, denoted by juxtaposition. For every
n ≥ 1, there is a unique product Mn −→ M,

(a1, a2, . . . , an) 7→ a1a2 · · ·an,
such that

(a) The product of one element is that element (a) = a.
(b) The product of two elements agrees with the given operation

(ab) = ab.
(c) For all n ≥ 2, for all a1, . . . an ∈ M, and for all 1 ≤ k ≤ n − 1,

a1a2 · · ·an = (a1 · · ·ak)(ak+1 · · ·an).
Proof. For n ≤ 2 the product is uniquely defined by (a) and (b).
For n = 3 a unique product with property (c) exists by the asso-
ciative law. Now let n > 3 and suppose that for 1 ≤ r < n, a
unique product of r elements exists satisfying properties (a)-(c). Fix
elements a1, . . . an ∈ M. By the induction hypothesis, the n−1 prod-
ucts

pk = (a1 · · ·ak)(ak+1 · · ·an),
which involve products of no more that n−1 elements at a time, are
defined. Moreover, we have pk = pk+1 for 1 ≤ k ≤ n − 2, since

pk = (a1 · · ·ak)(ak+1 · · ·an) = (a1 · · ·ak)(ak+1(ak+2 · · ·an))

= ((a1 · · ·ak)ak+1)(ak+2 · · ·an) = (a1 · · ·ak+1)(ak+1 · · ·an)

= pk+1.
Thus all the products pk are equal, and we can define the product of
n elements satisfying (a)-(c) by

a1 · · ·an = a1(a2 · · ·an).
n

• Page 89: Omit Exercise 2.1.4.
• Page 89: Exercise 2.1.5 should refer to Proposition 2.1.5, not 2.1.6.
• Page 99, Corollary 2.2.28: Let b ∈ Z, b 6= 0.
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• Page 102, Exercise 2.1.14: . . . the orders o(a) and o(b) of a and b

are relatively prime.
• Page 105, before Figure 2.3.4: the co-ordinates of the vertices are




cos(2kπ/n)

sin(2kπ/n)

0



 for k = 0, 1, . . . , n − 1.
• Page 113, Comment on Proposition 2.4.12: We remind the reader
that if f : X −→ Y is any map, and B ⊆ Y, then f−1(B) denotes the
pre-image of B in X, namely f−1(B) = {x ∈ X : f(x) ∈ B}. This alwasy
makes sense even if f does not have have an inverse function, and
the notation is not supposed to suggest that f has an inverse func-
tion.

In Proposition 2.4.12, we consider a homomorphism ϕ : G −→
H between groups. For a subgroup B ⊆ H, ϕ−1(B) means the set of
elements g ∈ G such that ϕ(g) ∈ B.
• Page 125, three lines from the bottom: Each left coset is nonempty
. . .
• Page 139, Proof of Proposition 2.7.12, second paragraph. There is
a missing bar over over G in the second line. The paragraph should
read:

To prove (b), we show that the map A 7→ ϕ(A) is the inverse of
the map B 7→ ϕ−1(B). If B is a subgroup of G, then ϕ(ϕ−1(B)) is a
subgroup of G, that a priori is contained in B. But since ϕ is surjec-
tive, B = ϕ(ϕ−1(B)).
• Page 143, Exercise 2.7.5 should read:

Suppose G is a finite group. Let N be a normal subgroup of G

and A an arbitrary subgroup. Verify that
|AN| =

|A| |N|

|A ∩ N|
.

• Page 144, Exercise 2.7.7, Part (a): Show that Aut(G) is a group.
• Page 146, Example 3.1.3: Let a and b be relatively prime natural
numbers, each greater than 1.
• Page 151, Exercise 3.1.7 should be skipped; it is the same as Propo-
sition 3.1.4.
• Page 154, Exercise 3.2.1: . . . is the inverse of (n, a).
• Page 157, proof of Lemma 3.3.3, first line: Let b1 be any element
of G such that . . .
• Page 158, Proof of Proposition 3.3.4, 3rd paragraph, second line:
Thus, g −

∑
i≥2 niai ∈ A1 = 〈a1〉, so . . .
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• Page 159, proof of Theorem 3.3.8, 2nd paragraph, 3rd line: Con-
sider the homomorphism ϕ(x) = px of G into itself.
• Page 160, statement of Lemma 3.3.11: Suppose a finite abelian
group G is an internal direct product of a collection {Ci} of cyclic sub-
groups, each of order a power of a prime.
• Page 221, Example 5.4.14. There is an error in the argument in the
second paragraph. The third Sylow theorem does not imply that the
subgroups Q and R are normal. Instead, one must argue that at least
one of the subgroups Q and R must be normal. The argument is as
follows:

By the third Sylow theorem, the number n5 of conjugates of R

is congruent to 1 (mod 5), and divides 30. Hence n5 ∈ {1, 6}. LIke-
wise the number n3 of conjugates of Q is congruent to 1 (mod 3) and
divides 30. Hence nr ∈ {1, 10}. I claim that at least one of Q and R

must be normal. If R is not normal, then R has 6 conjugates. The in-
tersection of any two distinct conjugates is trivial (as the size must
be a divisor of the prime 5). Therefore, the union of conjugates of R

contains 6×4 = 24 elements of order 5. Likewise, if Q is not normal,
then the union of its 10 conjugates contains 20 elements of order 3.
Since G has only 30 elements, it is not possible for both R and Q to
be non-normal.

Since at least one of R and Q is normal, N = RQ is a subgroup of
G of order 15. Now N is normal in G, since it has index 2, and cyclic,
since any group of order 15 is cyclic.
• Page 222, Exercise 5.4.2: This is just plain wrong. Who knows
what I was thinking!
• Page 229, In the description of the polynomial rings over a ring
R, one should require that the ring R have a multiplicative identity.
(There is a way to get around this requirement, but it is not impor-
tant to do so at this point.)
• Page 232, Example 6.1.9. Same comment here. One should re-
quire that R have an identity.
• Page 232, Example 6.1.9, third line: R[[x]], instead of K[[x]].
• Page 233, Exercise 6.1.2: Assume the ring R has identity element.
• Page 234, Exercise 6.1.17: Consider only the situation that R has
an identity element.
• Page 236, Corollary 6.2.6, 2nd line of statement: . . . that extends
ψ.
• Page 236, Corollary 6.2.6: I should not mention the kernel of ψ̃

here, as the notion of kernel is defined only on the next page. The
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statement about the kernel is repeated on the next page in Example
6.2.13.
• Page 238, Example 6.2.15 and Definition 6.2.16: RxR is supposed
to denote

{
∑

i

rixr ′i : ri, r ′i ∈ R},
rather than

{rxr ′ :, r, r ∈ R}.
The latter set is not closed under addition, and therefore not an ideal,
in general.
• Page 424, Definition E.2: A set S of vectors is . . .
• Page 428, Definition E.9: The range of a linear transformation T :

V → Km is {T(xxx) : xxx ∈ V}.
• Page 430, proof of Lemma E.15, last line: Hence the span of S\{vvvj}is the same as the span of S.
• Page 431, 4th line from bottom: A matrix M has a left inverse . . .
• Page 433, twice on the page: Cauchy-Schwarz rather than Cauchy-
Schwartz.


