Mathematics 90 Midterm Exam I - F. Goodman October, 1998
 Version 1

1. How many different arrangements are there of the letters in:

A MAN, A PLAN, A CANAL: PANAMA
2. Eight rooks, 3 red, 2 white, and 3 blue, are to be placed on an 8 -by- 8 chessboard so that no two rooks are in the same rank or file (row or column). How many arrangements are possible?
3. Evaluate $\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k}$ and $\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}\binom{n}{k}$
4. Fix positive integers N and k.
(a) How many integer solutions are there to:

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k}=N, \quad x_{i} \geq 0 \quad ? \tag{1}
\end{equation*}
$$

(Hint: The answer is a binomial coefficient.)
(b) Show there is a bijection between the set of integer solutions to:

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k} \leq N, \quad x_{i} \geq 0 \tag{2}
\end{equation*}
$$

and the set of integer solution to

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k+1}=N, \quad x_{i} \geq 0 . \tag{3}
\end{equation*}
$$

Use this to find the number of integer solutions to the inequality (2).
(c) On the other hand, the number of integer solutions to (2) in part (b) is a sum of binomial coefficients. Use this to derive an identity for binomial coefficients.
5. (EXTRA) I invite one of three friends A, B, and C on 6 successive nights. How many arrangements are there such that no one friend is invited on three successive nights?

