1. FIRST CONCEPTS

The geometry which wewill study consistsof aset S, called space. Theelements
of the set are called points. Furthermore S has certain distinguished subsets called
linesand planes. A little later we will introduce other special types of subsetsof S,
for example, circles, triangles, spheres, etc.

On the one hand, we want to picture these various types of subsets according
to our usua conceptions of them: Lines, planes, and so forth are idealizations of
objects known from experience of the physical world. For example, alineis an
idealization of a piece of string streched taughtly between two points. But it is sup-
posed to extend indefinitely in both directions, and, of course, we do not have any
direct physical experience with anything of indefinite extent. Similarly a planeis
supposed to be aflat surface, like atable-top, but also is supposed to extend indef-
initely in all directions. (Sort of like Nebraska, but larger.) Again, we don’'t have
any direct physical experience with flat surfaces of indefinite extent.

On the other hand, we want to try to be very careful not to use in any proof any
assumptions about these objects except those which we have made explicit. Only
in thisway can we be sure that our arguments are actually correct, and that our con-
clusions are actually correct.

We will allow ourselves the use of the real numbers, and all of their usual prop-
erties.

AxiomI-1 Giventwodistinct points, thereisexactly onelinecontainingthem.
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A

FIGUure 1.1. Axiom I-1

Remember, alineisaset of points, and containment here means containment as
elements. We denote by ‘F% the line containing distinct points P and Q

We call any collection of pointswhich lie on oneline colinear and any collection
of points which lie on one plane coplanar

Axiom |-2  Given three non-colinear points, thereis exactly one plane con-
taining them.



FIGURE 1.2. Axiom |-2

Axiom1-3 Iftwodistinct pointsliein aplaneP , thenthelinecontainingthem
isasubset of P.

FIGURE 1.3. AxiomI-3

Axiom |-4  If two planesintersect, then their intersection isaline.

FIGURE 1.4. Axiom |-4

Theorem 1.1. If two distinct lines intersect, then their intersection consists of ex-
actly one point.



FIGURE 1.5. Theorem 1.1

Proof. We could rephrase the statement thus: if two lines are distinct, then their
intersection does not contain two distinct points. The contrapositiveis: If two lines
L and M contain two distinct points in their intersection, then L = M. We prove
this contrapositive statement.

Suppose L and M arelines (possibly the same, possibly distinct), and Pand Q are
two different points in their intersection. Since P, Q are elements of L, it follows
from Axiom |-1 that L = (P—Q Likewise, since P, Q are elements of M, it follows
from Axiom |-1 that M = (P@ But then M = (F%: L O

Theorem 1.2. If aline L intersectsa plane P and L is not a subset of P then the
intersection of L and P consists of exactly one point.

Proof. Exercise, or in class. O

FIGURE 1.6. Theorem 1.2



So far, al the axioms (and two theorems) would be valid for a geometry with
only one point P with { P} begin both aline and an plane! So clearly the axioms so
far do not force usto be talking about the geometry which we expect to talk about!
Very shortly, | will give axioms which ensure that space has lots of points, but in
the meanwhile let us at |east assume the following:

Axiom |-5 Everylinehasat least two points. Every plane hasat least 3 non-
colinear points. And S has at least 4 non-coplanar paints.

Theorem 1.3. If Lisaline, and Pisapoint notin L, thenthereisexactly one plane
P containing L U {P}.

Proof. Exercise, or in class. O

FIGURE 1.7. Theorem 1.3

Theorem 1.4. If L and M are two distinct lines which intersect, then there is ex-
actly one plane containing L U M.

Proof. Exercise, or in class. O

FIGURE 1.8. Theorem 1.4



2. DISTANCE

A familiar notionin geometry isthat of distance. The distance between two points
isthelength of the line segment connecting them. In order to get thingsinto logical
order, we will actually introduce the notion of distance first, and use it to establish
the notion of line segment!

Axiom D-1  For every pair of points A, B thereisa number d(A, B), called
the distance from A to B. Distance satisfiesthe following properties:

1. d(A, B) =d(B, A)
2. d(A,B) > 0,and d(A, B) =0if, and only if, A= B.

Definition 2.1. A coordinate function on aline L is a bijective (one-to-one and
onto) function f from L to the real numbers R which satisfies | f (A) — f(B)| =
d(A, B)foral A, B € L. Givenacoordinatefunction f, thenumber f (A) iscalled
the coordinate of the point A € L.

Axiom D-2 Every linehasat least one coordinate function.

It follows immediately that every line contains infinitely many points, because
R isaninfinite set, and a coordinate function is a one-to-one correspondence of the
line with R. Any coordinate function makes alineinto a“number line” or “ruler”.

Lemma?2.2. If Lisalineand f : L — R isa coordinate function, then g(A) =
— f(A) isalso a coordinate function.

Proof. In class, or exercise. O

Lemma?2.3. If Lisalineand f : L — R isacoordinate function, then for any real
number s, h(A) = f(A) + sisalso a coordinate function.

Proof. In class, or exercise. O

Lemma2.4. Let L bealineand A and B distinct points on theline L. Then there
isa coordinate function f on L satisfying f(A) =0and f(B) > 0. Furthermore,
if g isany coordinate function on L then f can be taken to have the form

f(P)==+g(P) +s
for somes € R.
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Proof. By Axiom D-2, L has a coordinate function g. Let s = g(A), and define
f1(P) = g(P) —s. By Lemma 2.3, f; isaso acoordinate function, and f1(A) =
g(A) —s=0. Now | fy(B)| = | f(B) — fi(A)| =d(A, B) > 0, since A # B. If
f1(B) > 0, wetake f(P) = f{(P). Otherwise, wetake f (P) = — f1(P), whichis
also a coordinate function by Lemma 2.2. O

Theorem 2.5. Let L bealineand A and B distinct points on the line L. Thereis
exactly one coordinate function f on L satisfying f(A) =0and f(B) > 0.

Proof. Thepreviouslemmasaysthat thereisat least one such function. We haveto
show that thereisonly one. So let f, g be two coordinate functions on L satisfying
f(A)=g(A)=0and f(B) > 0, g(B) > 0. Wehaveto showthat f (C) = g(C) for
al C e L. Inany case, we have | f (C)| = | f(C) — f(A)| =d(A, B) =|g(C) —
g(A)| = |g(C)|. Soincase f(C) and g(C) are both non-negative or both non-
positive, they are equal. In particular, f(B) = g(B) = d(A, B).

If £(C), g(C) satisfy f(C) < f(B) and g(C) < g(B), then g(B) — g(C) =
d(B,C)= f(B)— f(C). Therefore, f(C) —g(C)= f(B)—g(B)=0,0r f(C) =
9(C).

Theonly remaining caseto consider isthat for someC € L, oneof f(C), g(C)is
negative and one is greater than f(B) = g(B). Without loss of generality, assume
g(C) < 0and g(B) < f(C). Thenwe have

d(C, B) =g(B) — g(C)
= (9(B) —g(A)) + (9(A) — g(C))
=d(A, B)+d(A, C),

since g(C) < g(A) < g(B). Using the coordinate function f instead, we have
d(A,C)= f(C)— f(A)
= (f(C) - f(B) + (f(B) — f(A)
=d(B,C) +d(A, B),

since f(A) < f(B) < f(C). Adding the two displayed equations gives
d(C,B)+d(A,C) =d(A,B)+d(A,C)+d(B,C)+d(A, B),
and canceling like quantities on the two sides gives
0=2d(A, B).

But thisisfase, because A # B. This contradiction shows that the case under con-
sideration cannot occur. So we aways have f(C) = g(C). O



Theorem 2.6. Let f, g be two coordinate functionson aline L. Then
f(P) ==+9(P) +s,
for somes e R.

Proof. Let A= f~1(0), so f(A) = 0. Furthermore, let B= f~1(1), so f(B) =
1. According to Lemma 2.4, there is a coordinate function h of the form h(P) =
+g(P) 4+ swhich satisfiesh(A) = 0 and h(B) > 0. But according to Theorem 2.5,
h= f,so f hasthe desired form. O

3. BETWEENNESS, SEGMENTS, AND RAYS

Definition 3.1. Let X, y, and z be three different real numbers. We say that y is
between xand zif X < y < zor z < y < x. Wedenotethisrelationby x —y— 2z

Notethat x — y— zisequivaenttoz— y — x.

Lemma 3.2. Letx, y, and zbethree different real numbers. Let sbeareal number.
The following are equivalent:

@ x—y—z

(b)) X+s)—(Yy+s) —(z+59).

© 00—y —(-2.

(d (—x4+8)—(=y+s) —(=z+59).

Proof. Thisistrue because addition of anumber to both sides of an inequality pre-
serves the inequality, while multiplying both sides of an inequality by (-1) reverses
the order of the inequality. O

Lemma3.3. Let L bealine, and let f, g be two coordinate functions on L. Let
A, B, C bedistinct pointson L. The following are equivalent:

@ f(A— f(B)— f(C).

(0 g(A) —g(B) —g(C).

Proof. Notethat all the quantities f (P), g(P) for P apointin L arerea numbers.
So the two conditions concern betweenness for real numbers.

According to Theorem 2.6, there is an ¢ € {1} and areal number s such that
for al points Pon L, f(P) = ¢g(P) + s. Then according to Lemma 3.2, the two
conditions (a) and (b) are equivalent. O



Definition 3.4. Let L be a ling, and let A, B, C be distinct points on L. We
say that B is between A and C if for some coordinate function f on L, one has
f(A)— f(B) — f(C). We denote thisrelationby A— B— C.

A

FIGURE 3.1. Bisbhetween Aand C

AccordingtoLemma3.2, if f(A) — f(B) — f(C) for one coordinate function
f, then f(A) — f(B) — f(C) for all coordinate functions f. So the concept of
betweennessfor points on aline does not depend on the choice of acoordinate func-
tion. By convention, when we assert that three points A, B, C satisfy A— B — C,
we implicitly assert that the three points are distinct and colinear.

The next two theorems are very easy:

Theorem 3.5. A— B— Cif,andonly if, C— B— A.

Proof. Exerciseor in class. O

Theorem 3.6. Given three distinct points on a line, exactly one of themis between
the other two.

Proof. Exerciseor in class. O

Definition 3.7. Let A and B be two distinct points. The line segment AB is the

subset of theline AB consisti ng of A, B, and the set of points C which are between
A and B.
AB={C: A— C—B}U{A, B}

Theorem 3.8. Let A, B bedistinct pointsand let f be a coordinate system on AB
suchthat f(A) < f(B). Then AB={C e AB: f(A) < f(C) < f(B)).

Proof. Exerciseor in class. O



B

FIGURE 3.2. A Segment

Theorem 3.9. A line segment determines its endpoints. That is, if segments AB
and A’B’ areequal, then {A, B} = {A’, B'}.

Proof. Exerciseor in class. O

Definition 3.10. Let A and B betwo distinct points. Therayﬂé isisthe subset of

the line AB consisting of A, B, and the set of points C suchthat A— C— Bor
A—B—C.

A

FIGURE 3.3. A Ray

Theorem 3.11. Let A and B be two distinct points. The ray AB consists of those
points C € AB such that C does not satisfyC— A— B.

Proof. Exerciseor in class. O

Theorem 3.12. Let A and B betwo distinct points. Let f be a coordinate function
on AB suchthat f (A)=0and f(B) > 0. Then Theray AB consists of those points
C ¢ AB such that f(C)=>0.

Proof. Exercise or in class. O
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Theorem 3.13. A ray determines its endpoint. That is, if rays AB and A'B are
equal, then A= A.

Proof. Exerciseor in class. O

Theorem 3.14. Aray isdetermined by its endpoint and any other point on theray.
That is, if C € ABand C # A, then AC = AB.

Proof. Exerciseor in class. O

Definition 3.15. Anangleisthe union of two rayswith the same endpoint, not con-
tained in oneline. Thetwo raysare called the sides of the angle. The common end-
point is called the vertex of the angle. The angle ABU AC is denoted / BAC (or
equally well /CAB.)

B

FIGURE 3.4. AnAngle

Remark 3.16. The union of two distinct rays with a common endpoint, which do
lieon oneline, istheline. (Proof?) So we will sometimes call aline with adistin-
guished point on the line a straight angle.

Definition 3.17. Let A, B, C be non-colinear points. The triangle A ABC is the
union of the segments AB, BC, and AC. Thethree segments are called the sides of
thetriangle. Theangles /ABC, /BCA, /CAB arecalled theanglesof thetriangle.
One often denotesthese anglesby Z A, /B, and /C, respectively. One saysthat /C
and side AB are opposite, and similarly for the other angles and sides.

Theorem 3.18. A triangle determines its vertices. That is, if AABC = ADEF,
then {A, B,C} = {D, E, F}.

Proof. The proof of thisis surprisingly tricky, and requires several steps. We will
probably skip it. O



1

B

FIGURE 3.5. A Triangle

The next result is dightly technical. It gives a characterization of betweenness
(and therefore of line segments).

Theorem 3.19. Let A, B, C bedistinct points on a line. The following are equiva-
lent:

@ A—B—C.

(b) d(A,C)=d(A, B)+d(B,C).

Proof. Itispossibletochooseacoordinatefunction f on L suchthat f(A) < f(B),
by Theorem 2.5.
Suppose A— B—C. Then f(A) < f(B) < f(C),so
d(A,C) = f(C) - f(A)
= (f(C) - f(B)) + (f(B) — f(A)
=d(B,C) +d(A, B).
Thus we have (a) implies (b).
Suppose now that (b) holds. According to Theorem 3.6, exactly one of the con-
ditionsis satisfied:

1. B—A—C.
2. A—C—B.
3. A—B—C.

Our strategy isto eliminate the first two possibilities, leaving only the third.
Suppose we have B— A— C. It follows that

(3.1) d(B,C) =d(B, A) +d(A,C),

by the (already proved) implication (&) implies (b).
Now adding this equation and the equation in condition (b), and then canceling
like terms on the two sides gives

sothat A= B by Axiom D-1. Thiscontradictsour original assumptions, soit cannot
betruethat B— A—C.
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The second possibility is eliminated in exactly the same way. This leaves only
the third possibility, and proves the implication (b) implies (a). O

This theorem gives us a not so obvious characterization of line segments:

Corollary 3.20. Let A and C be distinct points, and let B be a third point on %,
possibly equal to one of A, C. The following are equivalent:

(@ Bisontheline segment AC.
(b) d(A C)=d(A, B)+d(B,C).

Theorem 3.21. Given two distinct points Aand B on aline L, thereisa point M
on L such that A— M — B and thereisa point E on L suchthat A— B— E.

Proof. Let f be acoordinate function on L chosen such that 0 = f(A) < f(B),
which is possible by Theorem 2.5. Lee m= f(B)/2and e = 2f(B). Since f is
a bijection between L and R, there exist unique points M and E on L such that
f(M)=mand f(E) = e. Now we have f(A) < f(M) < f(B),and f(A) <
f(B) < f(E),)so A— M —Band A— B—E. O

A

FIGURE 3.6. Theorem 3.13

Given 4 distinct points A, B, C, D on aline, we write A— B— C — D if dll
therelationshold: A—B—C, A—B—D, A—C—D,andB—C—D.

Theorem 3.22. Any four points on a line can be named in exactly one order
A, B,C, D suchthat A— B— C— D.

A

FIGURE 3.7. Theorem 3.14
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Definition 3.23. Thelength of aline segment ABisd(A, B). Thelength is some-
times denoted by ¢(AB). Two segments are said to be congruent if they have the
same length. One denotes congruence of segments by AB = CD.

Theorem 3.24. (Segment addition and subtraction) Suppose A, B, C are colinear
with A— B— C and A/, B/, C" are colinear with A’ — B' — C'.

(8 IfAB= A'B'and BC= B'C/,then AC= AC’.

(b) 1fAB= AB and AC= AC/,then BCX B'C.

Proof. Thisisimmediate from the definition of congruence and theimplication (a)
implies (b) in Theorem 3.19. O

FIGURE 3.8. Theorem 3.24

4. SOME LOGIC, AND SOME PROPERTIES OF FUNCTIONS

4.1. Quantifiers. One frequently makes statements in mathematics which assert
that all the elementsin some set have a certain property, or that there exists at |east
one element in the set with a certain property. For example:

e For every real number X, one has X2 > 0.

e ForallinesLand M, if L # M and L N M isnon-empty, then LN M consists

of exactly one point.
e There exists a positive real number whose squareis 2.
e Let L bealine. Thenthere exist at least two pointson L.

Statements containing one of the phrases “for every”, “for al”, “for each”, etc.
are said to have a universal quantifier. Such statements typically have the form:

e For all x, P(x),
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where P(x) issome assertion about x. Thefirst two examples above have universal
quantifiers.

Statements containing one of the phrases*thereexists,” “thereis,” “onecanfind,”
etc. are said to have an existential quantifier. Such statements typically have the
form:

e Thereexists an x such that P(x),

where P(x) issome assertion about X. Thethird and fourth examples above contain
existential quantifiers.

Onething to watch out for in mathematical writing isthe use of implicit universal
quantifiers, which are usually coupled with implications. For example,

e If xisanon-zero real number, then x? is positive
actually means,
e For al real numbers x, if x # 0, then x? is positive,

or
e For all non-zero real numbers x, the quantity x? is positive.

4.2. Negation of Quantified Statements. Let us consider how to form the nege-
tion of sentences containing quantifiers. The negation of the assertion that every x
has a certain property isthat some x does not have this property; thus the negation
of

e For every x, P(X).

e There exists an x such that not P(x).
For example the negation of the (true) statement
e For all non-zero real numbers x, the quantity x? is positive
isthe (false) statement
e There exists anon-zero real numbers x, such that x? < 0.
Similarly the negation of a statement
e Thereexists an x such that P(x).

e For every x, not P(x).
For example, the negation of the (true) statement
e Thereexistsareal number x such that x* = 2.
isthe (false) statement
e For all real numbers x, X* # 2.

In order to express complex ideas, it is quite common to string together several
guantifiers. For example
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e For every positive real number X, there exists a positive real number y such
that y? = x.

e For every natural number m, thereexistsanatural number nsuchthat n > m.

e For every pair of distinct points p and g, there exists exactly oneline L such
that L contains p and g.

All of these are true statements.

Thereisarather nicerulefor negating such statementswith chains of quantifiers:
onerunsthrough chain changing every universal quantifier to an existential quanti-
fier, and every existential quantifier to a universal quantifier, and then one negates
the assertion at the end.

For example, the negation of the (true) sentence

e For every positive real number X, there exists a positive real number y such
that y? = x.

isthe (false) statement

e Thereexistsa positive real number x such that for every positive real number
y, one has y? # x.

4.3. Order of quantifiers. Itisimportant to realize that the order of universal and
existential quantifiers cannot be changed without utterly changing the meaning of
the sentence. For example, if you start with the true statement:

e For every positive real number X, there exists a positive real number y such
that y? = x

and reverse the two quantifiers, you get the totally absurd statement:

e Thereexistsa positive real number x such that for every positive real number
y, one has y? = x.

4.4. Properties of functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout mathematics.
A function f from Ato Bisarulewhich givesfor each element of a € A an “out-
come” in f(a) € B. Aiscalled the domain of the function, B the co-domain, f (a)
is called the value of the function at a, and the set of all values, {f(a) : ae€ A}, is
called the range of the function.

In general, the range is only a subset of B; afunction is said to be surjective, or
onto, if itsrangeisall of B; that is, for each b € B, there existsan a € A, such that
f(a) = b. Figure 4.1 exhibits a surjective function. Note that the statement that a
function is surjective hasto be expressed by a statement with astring of quantifiers.

A function f is said to be injective, or one-to-one, if for each two distinct el-
ementsa and & in A, one has f(a) # f(a). Equivaently, for al a,a’ € A, if
f(a) = f(a@) thena = a'. Figure 4.2 displays an injective and a non- injective
function.



16

(e] (e]
o o
(e] o
(e] o
(e]
(e]

FIGURE 4.1. A Surjection
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FIGURE 4.2. Injective and Non-injective functions

Finally f issaid to be bijective if it is both injective and surjective. A bijective
function (or bijection) isalso said to be aone-to-one correspondence between A and
B, since it matches up the elements of the two sets one-to-one. When f ishijective,
there is an inverse function f—1 defined by f~1(b) = aif, and only if, f(a) = b.
Figure 4.3 displays a bijective function.

If f:X — Yisafunctionand A isasubset of X, we write f(A) for {f(a) :
aec Al ={yeY: thereexistsae Asuchthat y= f(a)}. Wereferto f(A) asthe
image of Aunder f. If Bisasubset of Y, wewrite f~1(B) for {x € X: f(x) € B}.
We refer to f~1(B) asthe preimage of B under f.
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5

FIGURE 4.3. A Bijection

5. SEPARATION OF A PLANE BY A LINE

According to our usual conception of lines and planes, aline L contained in a
planeP dividesthe planeinto two “halves,” one one each “side” of theline. Given
two points on one side of the ling, it is possible to trace a curve from one point to
the other which does not cross the line L. But given two points on opposite sides
of theline, any curve from oneto the other will crossthe line. These statements do
not follow from our previous axioms, so we need to assert them as a new axiom.

First we need a definition:

Definition_5.1. A set Sisconvex if, for each two distinct points A, B € S, theline
segment AB isasubset of S.

For example, it follows from Axiom I-3 that a plane is a convex set.

Exercise5.2.

1. Every lineisconvex.

2. Every line segment is convex.

3. Every ray is convex.

4. The set of points on aray other than the endpoint is convex.

Exercise 5.3. Draw some pictures of convex and non-convex subsets of a plane.

Axiom PS  (Planeseparation axiom) Let L bealineand P a plane containing
L. Then P \ L (the set of pointson P which are not on L) isthe union of two
sets Hy and H, with the properties:
1. H; and H; are non-empty and convex.
2. Whenever Pand Q arepointssuchthat P € H; and Q € Hy, the segment
PQintersects L.

One calls Hy and H, the two half-planes determined by L. One says that two
points both contained in one of the half-planes are on the same side of L, and that
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FIGURE 5.1. Plane separation axiom

two points contained in different half-planes are on opposite sides of L. One calls
L the boundary of each of the half-planes. The union of either of the half-planes
with L is called a closed half-plane.

Exercise54. Let L bealineinaplane P, and let A, B be points of P which are
not on L. Then L intersectsthe segment AB if, and only if, Aand B are on the same
sideof L.

Theorem 5.5. (Pasch'sAxiom) Let AABC beatriangleinaplaneP. Let L # AB
be alinein P which intersects the segment AB at a point between A and B. Then
L intersects one of the other two sides of the triangle.

FIGURE 5.2. Pasch’'s Axiom

Proof. Since L intersectsthe segment AB at apoint between A and B, Aand B lie
on opposite sides of L, by the previous exercise. Suppose that L does not intersect
AC; then A and C are on the same side of L, again, by the previous exercise. It
follows that C and B are on opposite sides of L, and therefore L intersects CB by
the Plane Separation Axiom. O
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Remark 5.6. Thisis called Pasch’'s axiom because it was introduced by Pasch as
an axiom, in place of the Plane Separation Axiom. For us, it is atheorem.

Theorem 5.7. Let AABC beatriangleinaplaneP. Let L bealinein P which
does not contain any of the vertices A, B, C of the triangle. Then L does not inter-
sect all three sides of the triangle.

Proof. Refer to the figurefor Pasch’s axiom. Suppose L intersects two of the sides
of thetriangle, say AB and BC. It hasto be show that L does not intersect AC. Be-
cause L intersects AB, it followsthat A and B are on oppositesidesof L. Similarly,
C and B are on opposite sides of L. Therefore, A and C are on the same side of L,
so L does not intersect AC. O

Theorem 5.8. Let P beaplane, and let L bealinein P. Let M =# L be another
linein P which intersects L. Then M intersects both half-planes of P determined
by L.

Proof. Let A bethe unique point of intersection of L and M (using Theorem 1.1).
Let f be a coordinate function on M and let B and C be points on M such that
f(B) < f(A) < f(C). Then we have B— A— C. Suppose B and C are on the
samesideof L, and let H denote the half-plane which contains both of them. Since
H isconvex, thesegment BC isasubset of H. Since A € BC, it followsthat A € H.
But AisasoinL,so Ac HN L =@. Thiscontradiction showsthat B and C areon
opposite sides of L, and thus M intersects both half-planes determined by L. [

Lemmab5.9. The set of points on a ray, other than the endpoint, is convex.

Proof. Let AB be aray, and let S denote Ké\ {A}. It must be shown that Sis
convex. Write M for AB. Let f beacoordinate function on M such that f(A)=0
and f(B) > 0 (Theorem 2.5). Then the ray AB is the set of points C on M such
that f(C) > 0 (Theorem 3.12) and Sisthe set of points C on M such that f(C) >
0. Let C and D betwo distinct pointsin S, and suppose without loss of generality
that 0 < f(C) < f(D). If C— X— D, then f(C) < f(X) < f(D). But then
f(X)>0,s0XeS O

Theorem 5.10. Let P beaplane, let L bealinein P. Let H be one of the half-
planesof P determined by L. Let Abeapointon L andlet Bbeapointin H. Then

every point of the AB other than A is an element of H. That is, KE\ {A} C H.
Moreover, ABNH= Kﬁ\ {A}
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FIGURE 5.3. Theorem 5.10

Proof. Let Sdenoteﬁé\ {A}. It must be shown that S= ABNH.

Write M for ﬁ; since B ¢ L, weknow M # L, and therefore A is the unique
pointon M N L. It followsthat SN L = @.

Let H' denote the half-plane opposite to H. Suppose (in order to reach a con-
tradiction) that SN H’ contains a point C. According to the previous lemma, Sis
convex; since both Band C arein S,onehasBC € S;so BCNL C SNL=¢. On
the other hand, by the Plane Separation Axiom, BC N L # . This contradiction
showsthat SN H’ = ¢. It followsthat SC H, so SC H N AB.

To finish the proof, it must be shown that H N AB C S, or, equivalently, ﬁ\
SCP\H.Solet Xe AB\ S If X= A then X e L C P \ H. If X # AB, then
one has X — A— B. But then L intersects XB at A, so X and B are on opposite
sidesof L. Hence X ¢ H. O

FIGURE 5.4. Angleinterior

Definition 5.11. Consider an angle /ABC in aplane P. The point B liesin one
half-plane H of P determined by AC. Similarly, the point C liesin one half-plane

K of P determined by AB. Theintersection H N K of thesetwo half-planesiscalled
theinterior of theangle. Wewill call theunion of theangle and itsinterior the closed
wedge determined by the angle. See figure 5.4.
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Theorem 5.12. Consider an angle /BAC, and let D be a point in the interior of
the angle. Then every point of the ray ﬁ, except for the endpoint A, liesin the
interior of theangle. That is, AD \ {A} liesin theinterior of the angle. Moreover,
the inter section of the line AD and the interior of the angleis AD \ {A}.

FIGURE 5.5. Theorem 5.12

Proof. Thisfollowsfrom two applications of Theorem 5.10. See Figure5.5. [

Theorem 5.13. Consider atriangle A ABC. All the points of the segment BC, ex-
cept for the endpoints, liein theinterior of the angle / BAC.

B

FIGURE 5.6. Theorem 5.13

Proof. See Figure 5.6. Let D be a point between B and C. Then D and B are on
the same side of line AB because that lineintersects ED at B, whichisnot between
Cand D. Similarly, D and B are on the same side of line AC. But this means that
D isintheinterior of angle /CAB. O

Theorem 5.14. (Crosshar Theorem) Let A ABC beatriangle, andlet D bea point
in the interior of the angle / A. Then the ray AD intersects the side BC of the tri-
angle oppositeto / A.
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FIGURE 5.8. Crossbar Proof

Proof. Refer to Figure 5.7 for the theorem statement and Figure 5.8 for the proof.
Thisis pretty tricky, and the reader isinvited to skip it for now, unless possessed by
particular zeal.

Designate the lines ﬁ, ﬁ, AB by ¢, m, and n respectively. Let E be a point
on linen such that E— A — B (Theorem 3.21). Let F be a point on the segment
EC suchthat E— F — C (Theorem 3.21).

We make several observations:

1
2.

3.
4,
5. D and C areonthesamesideof nsince D isintheinterior of theangle /CAB.

6.

7.

E and B are on opposite sides of ¢ because ¢ intersects EB at A.

E and F are on the same side of ¢ becauise ¢ intersects EE at C, whichisnot
between E and F.

D and B are on the same side of ¢ because D isin the interior of the angle
/CAB.

Therefore F and D are on opposite sides of £.

C and F are on the same side of n because n intersects £C at E, whichisnot
between F and C.
Therefore F and D are on the same side of n.

Since F and D lie on opposite sides of ¢, the segment FD intersects ¢ at some
point A’. Since F and D lie on the same side of n, the point A" isnot on n, and in
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particular A’ # A. If F were on line m, then ED would be equal to m. But this

cannot be so, beause FD intersects ¢ at A’ while mintersects ¢ at A.

Thus we conclude that m does not intersect EC at any point F between E and C.
Thus E and C are on the same side of m. But E and B are on opposite sides of m
because mintersects EB at Aand E — A — B. Therefore C and B are on opposite

sides of m, and m must intersect CB at some point X between C and B.

It remains only to show that X ison theray AD C m. But according to Theorem
5.13, X isin the interior of the angle / BAC, and according to Theorem 5.12, the

intersection of the interior of the angle and the line mis contained in the ray AD.
Therefore X ison the ray AD. O

Exercise 5.15. The intersection of two convex setsis convex. The intersection of
several convex Setsis convex.

Inthefollowing, L isalineinaplaneP, and H; and H, are the two half-planes
of P determined by L.

Exercise5.16. The closed half-plane H; U L is convex.
Exercise5.17. H; containsat least 3 non-colinear points.

Exercise5.18. P isthe unique plane containing Hj.



