
1. FIRST CONCEPTS

The geometry which we will study consists of a set S, called space. The elements
of the set are called points. Furthermore S has certain distinguished subsets called
lines and planes. A little later we will introduce other special types of subsets of S,
for example, circles, triangles, spheres, etc.

On the one hand, we want to picture these various types of subsets according
to our usual conceptions of them: Lines, planes, and so forth are idealizations of
objects known from experience of the physical world. For example, a line is an
idealization of a piece of string streched taughtly between two points. But it is sup-
posed to extend indefinitely in both directions, and, of course, we do not have any
direct physical experience with anything of indefinite extent. Similarly a plane is
supposed to be a flat surface, like a table-top, but also is supposed to extend indef-
initely in all directions. (Sort of like Nebraska, but larger.) Again, we don’t have
any direct physical experience with flat surfaces of indefinite extent.

On the other hand, we want to try to be very careful not to use in any proof any
assumptions about these objects except those which we have made explicit. Only
in this way can we be sure that our arguments are actually correct, and that our con-
clusions are actually correct.

We will allow ourselves the use of the real numbers, and all of their usual prop-
erties.

Axiom I-1 Given two distinct points, there is exactly one line containing them.
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FIGURE 1.1. Axiom I-1

Remember, a line is a set of points, and containment here means containment as
elements. We denote by

←→
PQ the line containing distinct points P and Q

We call any collection of points which lie on one line colinear and any collection
of points which lie on one plane coplanar

Axiom I-2 Given three non-colinear points, there is exactly one plane con-
taining them.
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FIGURE 1.2. Axiom I-2

Axiom I-3 If two distinct points lie in a plane P , then the line containing them
is a subset of P .
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FIGURE 1.3. Axiom I-3

Axiom I-4 If two planes intersect, then their intersection is a line.
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FIGURE 1.4. Axiom I-4

Theorem 1.1. If two distinct lines intersect, then their intersection consists of ex-
actly one point.
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FIGURE 1.5. Theorem 1.1

Proof. We could rephrase the statement thus: if two lines are distinct, then their
intersection does not contain two distinct points. The contrapositive is: If two lines
L and M contain two distinct points in their intersection, then L = M. We prove
this contrapositive statement.

Suppose L and M are lines (possibly the same, possibly distinct), and P and Q are
two different points in their intersection. Since P, Q are elements of L, it follows
from Axiom I-1 that L =←→PQ. Likewise, since P, Q are elements of M, it follows
from Axiom I-1 that M =←→PQ. But then M =←→PQ = L

Theorem 1.2. If a line L intersects a plane P and L is not a subset of P then the
intersection of L and P consists of exactly one point.

Proof. Exercise, or in class.

J

FIGURE 1.6. Theorem 1.2
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So far, all the axioms (and two theorems) would be valid for a geometry with
only one point P with {P} begin both a line and an plane! So clearly the axioms so
far do not force us to be talking about the geometry which we expect to talk about!
Very shortly, I will give axioms which ensure that space has lots of points, but in
the meanwhile let us at least assume the following:

Axiom I-5 Every line has at least two points. Every plane has at least 3 non-
colinear points. And S has at least 4 non-coplanar points.

Theorem 1.3. If L is a line, and P is a point not in L, then there is exactly one plane
P containing L ∪ {P}.
Proof. Exercise, or in class.
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FIGURE 1.7. Theorem 1.3

Theorem 1.4. If L and M are two distinct lines which intersect, then there is ex-
actly one plane containing L ∪ M.

Proof. Exercise, or in class.
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FIGURE 1.8. Theorem 1.4
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2. DISTANCE

A familiar notion in geometry is that of distance. The distance between two points
is the length of the line segment connecting them. In order to get things into logical
order, we will actually introduce the notion of distance first, and use it to establish
the notion of line segment!

Axiom D-1 For every pair of points A, B there is a number d(A, B), called
the distance from A to B. Distance satisfies the following properties:

1. d(A, B) = d(B, A)
2. d(A, B) ≥ 0, and d(A, B) = 0 if, and only if, A = B.

Definition 2.1. A coordinate function on a line L is a bijective (one-to-one and
onto) function f from L to the real numbers R which satisfies | f (A)− f (B)| =
d(A, B) for all A, B ∈ L. Given a coordinate function f , the number f (A) is called
the coordinate of the point A ∈ L.

Axiom D-2 Every line has at least one coordinate function.

It follows immediately that every line contains infinitely many points, because
R is an infinite set, and a coordinate function is a one-to-one correspondence of the
line with R. Any coordinate function makes a line into a “number line” or “ruler”.

Lemma 2.2. If L is a line and f : L→ R is a coordinate function, then g(A) =
− f (A) is also a coordinate function.

Proof. In class, or exercise.

Lemma 2.3. If L is a line and f : L→R is a coordinate function, then for any real
number s, h(A) = f (A)+ s is also a coordinate function.

Proof. In class, or exercise.

Lemma 2.4. Let L be a line and A and B distinct points on the line L. Then there
is a coordinate function f on L satisfying f (A) = 0 and f (B) > 0. Furthermore,
if g is any coordinate function on L then f can be taken to have the form

f (P) = ±g(P)+ s

for some s ∈ R.
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Proof. By Axiom D-2, L has a coordinate function g. Let s = g(A), and define
f1(P) = g(P)− s. By Lemma 2.3, f1 is also a coordinate function, and f1(A) =
g(A)− s = 0. Now | f1(B)| = | f1(B)− f1(A)| = d(A, B) > 0, since A 6= B. If
f1(B) > 0, we take f (P)= f1(P). Otherwise, we take f (P)=− f1(P), which is
also a coordinate function by Lemma 2.2.

Theorem 2.5. Let L be a line and A and B distinct points on the line L. There is
exactly one coordinate function f on L satisfying f (A) = 0 and f (B) > 0.

Proof. The previous lemma says that there is at least one such function. We have to
show that there is only one. So let f, g be two coordinate functions on L satisfying
f (A)= g(A)= 0 and f (B) > 0, g(B) > 0. We have to show that f (C)= g(C) for
all C ∈ L. In any case, we have | f (C)| = | f (C)− f (A)| = d(A, B) = |g(C)−
g(A)| = |g(C)|. So in case f (C) and g(C) are both non-negative or both non-
positive, they are equal. In particular, f (B) = g(B) = d(A, B).

If f (C), g(C) satisfy f (C) ≤ f (B) and g(C) ≤ g(B), then g(B) − g(C) =
d(B,C)= f (B)− f (C). Therefore, f (C)− g(C)= f (B)− g(B)= 0, or f (C)=
g(C).

The only remaining case to consider is that for some C ∈ L, one of f (C), g(C) is
negative and one is greater than f (B) = g(B). Without loss of generality, assume
g(C) < 0 and g(B) < f (C). Then we have

d(C, B) = g(B)− g(C)

= (g(B)− g(A))+ (g(A)− g(C))

= d(A, B)+ d(A,C),

since g(C) < g(A) < g(B). Using the coordinate function f instead, we have

d(A,C) = f (C)− f (A)

= ( f (C)− f (B))+ ( f (B)− f (A))

= d(B,C)+ d(A, B),

since f (A) < f (B) < f (C). Adding the two displayed equations gives

d(C, B)+ d(A,C) = d(A, B)+ d(A,C)+ d(B,C)+ d(A, B),

and canceling like quantities on the two sides gives

0 = 2d(A, B).

But this is false, because A 6= B. This contradiction shows that the case under con-
sideration cannot occur. So we always have f (C) = g(C).
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Theorem 2.6. Let f, g be two coordinate functions on a line L. Then

f (P) = ±g(P)+ s,

for some s ∈ R.

Proof. Let A = f−1(0), so f (A) = 0. Furthermore, let B = f−1(1), so f (B) =
1. According to Lemma 2.4, there is a coordinate function h of the form h(P) =
±g(P)+ s which satisfies h(A)= 0 and h(B) > 0. But according to Theorem 2.5,
h = f , so f has the desired form.

3. BETWEENNESS, SEGMENTS, AND RAYS

Definition 3.1. Let x, y, and z be three different real numbers. We say that y is
between x and z if x < y < z or z < y < x. We denote this relation by x y z

Note that x y z is equivalent to z y x.

Lemma 3.2. Let x, y, and z be three different real numbers. Let s be a real number.
The following are equivalent:

(a) x y z.
(b) (x+ s) (y+ s) (z+ s).
(c) (−x) (−y) (−z).
(d) (−x+ s) (−y+ s) (−z+ s).

Proof. This is true because addition of a number to both sides of an inequality pre-
serves the inequality, while multiplying both sides of an inequality by (-1) reverses
the order of the inequality.

Lemma 3.3. Let L be a line, and let f, g be two coordinate functions on L. Let
A, B,C be distinct points on L. The following are equivalent:

(a) f (A) f (B) f (C).
(b) g(A) g(B) g(C).

Proof. Note that all the quantities f (P), g(P) for P a point in L are real numbers.
So the two conditions concern betweenness for real numbers.

According to Theorem 2.6, there is an ε ∈ {±1} and a real number s such that
for all points P on L, f (P) = εg(P)+ s. Then according to Lemma 3.2, the two
conditions (a) and (b) are equivalent.
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Definition 3.4. Let L be a line, and let A, B,C be distinct points on L. We
say that B is between A and C if for some coordinate function f on L, one has
f (A) f (B) f (C). We denote this relation by A B C.

C
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A

FIGURE 3.1. B is between A and C

According to Lemma 3.2, if f (A) f (B) f (C) for one coordinate function
f , then f (A) f (B) f (C) for all coordinate functions f . So the concept of
betweenness for points on a line does not depend on the choice of a coordinate func-
tion. By convention, when we assert that three points A, B,C satisfy A B C,
we implicitly assert that the three points are distinct and colinear.

The next two theorems are very easy:

Theorem 3.5. A B C if, and only if, C B A.

Proof. Exercise or in class.

Theorem 3.6. Given three distinct points on a line, exactly one of them is between
the other two.

Proof. Exercise or in class.

Definition 3.7. Let A and B be two distinct points. The line segment AB is the
subset of the line

←→
AB consisting of A, B, and the set of points C which are between

A and B.
AB = {C : A C B} ∪ {A, B}

Theorem 3.8. Let A, B be distinct points and let f be a coordinate system on
←→
AB

such that f (A) < f (B). Then AB = {C ∈←→AB : f (A) ≤ f (C) ≤ f (B)}.
Proof. Exercise or in class.
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FIGURE 3.2. A Segment

Theorem 3.9. A line segment determines its endpoints. That is, if segments AB
and A′B′ are equal, then {A, B} = {A′, B′}.

Proof. Exercise or in class.

Definition 3.10. Let A and B be two distinct points. The ray
−→
AB is is the subset of

the line
←→
AB consisting of A, B, and the set of points C such that A C B or

A B C.

B

A

FIGURE 3.3. A Ray

Theorem 3.11. Let A and B be two distinct points. The ray
−→
AB consists of those

points C ∈←→AB such that C does not satisfy C A B.

Proof. Exercise or in class.

Theorem 3.12. Let A and B be two distinct points. Let f be a coordinate function
on
←→
AB such that f (A)= 0 and f (B) > 0. Then The ray

−→
AB consists of those points

C ∈←→AB such that f (C) ≥ 0.

Proof. Exercise or in class.
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Theorem 3.13. A ray determines its endpoint. That is, if rays
−→
AB and

−−→
A′B′ are

equal, then A = A′.

Proof. Exercise or in class.

Theorem 3.14. A ray is determined by its endpoint and any other point on the ray.
That is, if C ∈ −→AB and C 6= A, then

−→
AC = −→AB.

Proof. Exercise or in class.

Definition 3.15. An angle is the union of two rays with the same endpoint, not con-
tained in one line. The two rays are called the sides of the angle. The common end-
point is called the vertex of the angle. The angle

−→
AB ∪ −→AC is denoted 6 BAC (or

equally well 6 C AB.)
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FIGURE 3.4. An Angle

Remark 3.16. The union of two distinct rays with a common endpoint, which do
lie on one line, is the line. (Proof?) So we will sometimes call a line with a distin-
guished point on the line a straight angle.

Definition 3.17. Let A, B,C be non-colinear points. The triangle 4ABC is the
union of the segments AB, BC, and AC. The three segments are called the sides of
the triangle. The angles 6 ABC, 6 BC A, 6 C AB are called the angles of the triangle.
One often denotes these angles by 6 A, 6 B, and 6 C, respectively. One says that 6 C
and side AB are opposite, and similarly for the other angles and sides.

Theorem 3.18. A triangle determines its vertices. That is, if 4ABC = 4DEF,
then {A, B,C} = {D, E, F}.
Proof. The proof of this is surprisingly tricky, and requires several steps. We will
probably skip it.
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FIGURE 3.5. A Triangle

The next result is slightly technical. It gives a characterization of betweenness
(and therefore of line segments).

Theorem 3.19. Let A, B,C be distinct points on a line. The following are equiva-
lent:

(a) A B C.
(b) d(A,C) = d(A, B)+ d(B,C).

Proof. It is possible to choose a coordinate function f on L such that f (A) < f (B),
by Theorem 2.5.

Suppose A B C. Then f (A) < f (B) < f (C), so

d(A,C) = f (C)− f (A)

= ( f (C)− f (B))+ ( f (B)− f (A))

= d(B,C)+ d(A, B).

Thus we have (a) implies (b).
Suppose now that (b) holds. According to Theorem 3.6, exactly one of the con-

ditions is satisfied:

1. B A C.
2. A C B.
3. A B C.

Our strategy is to eliminate the first two possibilities, leaving only the third.
Suppose we have B A C. It follows that

d(B,C) = d(B, A)+ d(A,C),(3.1)

by the (already proved) implication (a) implies (b).
Now adding this equation and the equation in condition (b), and then canceling

like terms on the two sides gives

0 = 2d(B, A),(3.2)

so that A= B by Axiom D-1. This contradicts our original assumptions, so it cannot
be true that B A C.
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The second possibility is eliminated in exactly the same way. This leaves only
the third possibility, and proves the implication (b) implies (a).

This theorem gives us a not so obvious characterization of line segments:

Corollary 3.20. Let A and C be distinct points, and let B be a third point on
←→
AC,

possibly equal to one of A, C. The following are equivalent:

(a) B is on the line segment AC.
(b) d(A,C) = d(A, B)+ d(B,C).

Theorem 3.21. Given two distinct points A and B on a line L, there is a point M
on L such that A M B and there is a point E on L such that A B E.

Proof. Let f be a coordinate function on L chosen such that 0 = f (A) < f (B),
which is possible by Theorem 2.5. Let m = f (B)/2 and e = 2 f (B). Since f is
a bijection between L and R, there exist unique points M and E on L such that
f (M) = m and f (E) = e. Now we have f (A) < f (M) < f (B), and f (A) <
f (B) < f (E), so A M B and A B E.

C
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M

FIGURE 3.6. Theorem 3.13

Given 4 distinct points A, B,C, D on a line, we write A B C D if all
the relations hold: A B C, A B D, A C D, and B C D.

Theorem 3.22. Any four points on a line can be named in exactly one order
A, B,C, D such that A B C D.
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FIGURE 3.7. Theorem 3.14
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Definition 3.23. The length of a line segment AB is d(A, B). The length is some-
times denoted by `(AB). Two segments are said to be congruent if they have the
same length. One denotes congruence of segments by AB ∼= CD.

Theorem 3.24. (Segment addition and subtraction) Suppose A, B,C are colinear
with A B C and A′, B′,C′ are colinear with A′ B′ C′.
(a) If AB ∼= A′B′ and BC ∼= B′C′, then AC ∼= A′C′.
(b) If AB ∼= A′B′ and AC ∼= A′C′, then BC ∼= B′C′.

Proof. This is immediate from the definition of congruence and the implication (a)
implies (b) in Theorem 3.19.

B'

C'

A'

B

C

A

FIGURE 3.8. Theorem 3.24

4. SOME LOGIC, AND SOME PROPERTIES OF FUNCTIONS

4.1. Quantifiers. One frequently makes statements in mathematics which assert
that all the elements in some set have a certain property, or that there exists at least
one element in the set with a certain property. For example:

• For every real number x, one has x2 ≥ 0.
• For all lines L and M, if L 6= M and L∩M is non-empty, then L∩M consists

of exactly one point.
• There exists a positive real number whose square is 2.
• Let L be a line. Then there exist at least two points on L.

Statements containing one of the phrases “for every”, “for all”, “for each”, etc.
are said to have a universal quantifier. Such statements typically have the form:

• For all x, P(x),
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where P(x) is some assertion about x. The first two examples above have universal
quantifiers.

Statements containing one of the phrases “there exists,” “there is,” “one can find,”
etc. are said to have an existential quantifier. Such statements typically have the
form:

• There exists an x such that P(x),

where P(x) is some assertion about x. The third and fourth examples above contain
existential quantifiers.

One thing to watch out for in mathematical writing is the use of implicit universal
quantifiers, which are usually coupled with implications. For example,

• If x is a non-zero real number, then x2 is positive

actually means,

• For all real numbers x, if x 6= 0, then x2 is positive,

or

• For all non-zero real numbers x, the quantity x2 is positive.

4.2. Negation of Quantified Statements. Let us consider how to form the nega-
tion of sentences containing quantifiers. The negation of the assertion that every x
has a certain property is that some x does not have this property; thus the negation
of

• For every x, P(x).

is

• There exists an x such that not P(x).

For example the negation of the (true) statement

• For all non-zero real numbers x, the quantity x2 is positive

is the (false) statement

• There exists a non-zero real numbers x, such that x2 ≤ 0.

Similarly the negation of a statement

• There exists an x such that P(x).

is

• For every x, not P(x).

For example, the negation of the (true) statement

• There exists a real number x such that x2 = 2.

is the (false) statement

• For all real numbers x, x2 6= 2.

In order to express complex ideas, it is quite common to string together several
quantifiers. For example
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• For every positive real number x, there exists a positive real number y such
that y2 = x.
• For every natural number m, there exists a natural number n such that n> m.
• For every pair of distinct points p and q, there exists exactly one line L such

that L contains p and q.

All of these are true statements.
There is a rather nice rule for negating such statements with chains of quantifiers:

one runs through chain changing every universal quantifier to an existential quanti-
fier, and every existential quantifier to a universal quantifier, and then one negates
the assertion at the end.

For example, the negation of the (true) sentence

• For every positive real number x, there exists a positive real number y such
that y2 = x.

is the (false) statement

• There exists a positive real number x such that for every positive real number
y, one has y2 6= x.

4.3. Order of quantifiers. It is important to realize that the order of universal and
existential quantifiers cannot be changed without utterly changing the meaning of
the sentence. For example, if you start with the true statement:

• For every positive real number x, there exists a positive real number y such
that y2 = x

and reverse the two quantifiers, you get the totally absurd statement:

• There exists a positive real number x such that for every positive real number
y, one has y2 = x.

4.4. Properties of functions. We recall the notion of a function from A to B and
some terminology regarding functions which is standard throughout mathematics.
A function f from A to B is a rule which gives for each element of a ∈ A an “out-
come” in f (a) ∈ B. A is called the domain of the function, B the co-domain, f (a)
is called the value of the function at a, and the set of all values, { f (a) : a ∈ A}, is
called the range of the function.

In general, the range is only a subset of B; a function is said to be surjective, or
onto, if its range is all of B; that is, for each b ∈ B, there exists an a ∈ A, such that
f (a) = b. Figure 4.1 exhibits a surjective function. Note that the statement that a
function is surjective has to be expressed by a statement with a string of quantifiers.

A function f is said to be injective, or one-to-one, if for each two distinct el-
ements a and a′ in A, one has f (a) 6= f (a′). Equivalently, for all a, a′ ∈ A, if
f (a) = f (a′) then a = a′. Figure 4.2 displays an injective and a non- injective
function.
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FIGURE 4.1. A Surjection

FIGURE 4.2. Injective and Non-injective functions

Finally f is said to be bijective if it is both injective and surjective. A bijective
function (or bijection) is also said to be a one-to-one correspondence between A and
B, since it matches up the elements of the two sets one-to-one. When f is bijective,
there is an inverse function f−1 defined by f−1(b) = a if, and only if, f (a) = b.
Figure 4.3 displays a bijective function.

If f : X → Y is a function and A is a subset of X, we write f (A) for { f (a) :
a ∈ A} = {y ∈ Y : there exists a ∈ A such that y = f (a)}. We refer to f (A) as the
image of A under f . If B is a subset of Y , we write f−1(B) for {x ∈ X : f (x) ∈ B}.
We refer to f−1(B) as the preimage of B under f .
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FIGURE 4.3. A Bijection

5. SEPARATION OF A PLANE BY A LINE

According to our usual conception of lines and planes, a line L contained in a
plane P divides the plane into two “halves,” one one each “side” of the line. Given
two points on one side of the line, it is possible to trace a curve from one point to
the other which does not cross the line L. But given two points on opposite sides
of the line, any curve from one to the other will cross the line. These statements do
not follow from our previous axioms, so we need to assert them as a new axiom.

First we need a definition:

Definition 5.1. A set S is convex if, for each two distinct points A, B ∈ S, the line
segment AB is a subset of S.

For example, it follows from Axiom I-3 that a plane is a convex set.

Exercise 5.2.
1. Every line is convex.
2. Every line segment is convex.
3. Every ray is convex.
4. The set of points on a ray other than the endpoint is convex.

Exercise 5.3. Draw some pictures of convex and non-convex subsets of a plane.

Axiom PS (Plane separation axiom) Let L be a line and P a plane containing
L. Then P \ L (the set of points on P which are not on L) is the union of two
sets H1 and H2 with the properties:

1. H1 and H2 are non-empty and convex.
2. Whenever P and Q are points such that P ∈ H1 and Q ∈ H2, the segment

PQ intersects L.

One calls H1 and H2 the two half-planes determined by L. One says that two
points both contained in one of the half-planes are on the same side of L, and that
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H _ 2

H _ 1

FIGURE 5.1. Plane separation axiom

two points contained in different half-planes are on opposite sides of L. One calls
L the boundary of each of the half-planes. The union of either of the half-planes
with L is called a closed half-plane.

Exercise 5.4. Let L be a line in a plane P , and let A, B be points of P which are
not on L. Then L intersects the segment AB if, and only if, A and B are on the same
side of L.

Theorem 5.5. (Pasch’s Axiom) Let4ABC be a triangle in a plane P . Let L 6=←→AB
be a line in P which intersects the segment AB at a point between A and B. Then
L intersects one of the other two sides of the triangle.

C

B

A

FIGURE 5.2. Pasch’s Axiom

Proof. Since L intersects the segment AB at a point between A and B, A and B lie
on opposite sides of L, by the previous exercise. Suppose that L does not intersect
AC; then A and C are on the same side of L, again, by the previous exercise. It
follows that C and B are on opposite sides of L, and therefore L intersects CB by
the Plane Separation Axiom.
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Remark 5.6. This is called Pasch’s axiom because it was introduced by Pasch as
an axiom, in place of the Plane Separation Axiom. For us, it is a theorem.

Theorem 5.7. Let 4ABC be a triangle in a plane P . Let L be a line in P which
does not contain any of the vertices A, B,C of the triangle. Then L does not inter-
sect all three sides of the triangle.

Proof. Refer to the figure for Pasch’s axiom. Suppose L intersects two of the sides
of the triangle, say AB and BC. It has to be show that L does not intersect AC. Be-
cause L intersects AB, it follows that A and B are on opposite sides of L. Similarly,
C and B are on opposite sides of L. Therefore, A and C are on the same side of L,
so L does not intersect AC.

Theorem 5.8. Let P be a plane, and let L be a line in P . Let M 6= L be another
line in P which intersects L. Then M intersects both half-planes of P determined
by L.

Proof. Let A be the unique point of intersection of L and M (using Theorem 1.1).
Let f be a coordinate function on M and let B and C be points on M such that
f (B) < f (A) < f (C). Then we have B A C. Suppose B and C are on the
same side of L, and let H denote the half-plane which contains both of them. Since
H is convex, the segment BC is a subset of H. Since A ∈ BC, it follows that A ∈ H.
But A is also in L, so A ∈ H ∩ L= ∅. This contradiction shows that B and C are on
opposite sides of L, and thus M intersects both half-planes determined by L.

Lemma 5.9. The set of points on a ray, other than the endpoint, is convex.

Proof. Let
−→
AB be a ray, and let S denote

−→
AB \ {A}. It must be shown that S is

convex. Write M for
←→
AB. Let f be a coordinate function on M such that f (A)= 0

and f (B) > 0 (Theorem 2.5). Then the ray
−→
AB is the set of points C on M such

that f (C) ≥ 0 (Theorem 3.12) and S is the set of points C on M such that f (C) >
0. Let C and D be two distinct points in S, and suppose without loss of generality
that 0 < f (C) < f (D). If C X D, then f (C) < f (X) < f (D). But then
f (X) > 0, so X ∈ S.

Theorem 5.10. Let P be a plane, let L be a line in P . Let H be one of the half-
planes of P determined by L. Let A be a point on L and let B be a point in H. Then
every point of the

−→
AB other than A is an element of H. That is,

−→
AB \ {A} ⊆ H.

Moreover,
←→
AB ∩ H = −→AB \ {A}.
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FIGURE 5.3. Theorem 5.10

Proof. Let S denote
−→
AB \ {A}. It must be shown that S =←→AB ∩ H.

Write M for
←→
AB; since B 6∈ L, we know M 6= L, and therefore A is the unique

point on M ∩ L. It follows that S ∩ L = ∅.
Let H ′ denote the half-plane opposite to H. Suppose (in order to reach a con-

tradiction) that S ∩ H ′ contains a point C. According to the previous lemma, S is
convex; since both B and C are in S, one has BC ⊆ S, so BC ∩ L ⊆ S∩ L = ∅. On
the other hand, by the Plane Separation Axiom, BC ∩ L 6= ∅. This contradiction
shows that S ∩ H ′ = ∅. It follows that S ⊆ H, so S ⊆ H ∩←→AB.

To finish the proof, it must be shown that H ∩←→AB ⊆ S, or, equivalently,
←→
AB \

S ⊆ P \ H. So let X ∈ ←→AB \ S. If X = A, then X ∈ L ⊆ P \ H. If X 6= −→AB, then
one has X A B. But then L intersects X B at A, so X and B are on opposite
sides of L. Hence X 6∈ H.

B

C

A

FIGURE 5.4. Angle interior

Definition 5.11. Consider an angle 6 ABC in a plane P . The point B lies in one
half-plane H of P determined by

←→
AC . Similarly, the point C lies in one half-plane

K of P determined by
←→
AB. The intersection H∩ K of these two half-planes is called

the interior of the angle. We will call the union of the angle and its interior the closed
wedge determined by the angle. See figure 5.4.
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Theorem 5.12. Consider an angle 6 BAC, and let D be a point in the interior of
the angle. Then every point of the ray

−→
AD, except for the endpoint A, lies in the

interior of the angle. That is,
−→
AD \ {A} lies in the interior of the angle. Moreover,

the intersection of the line
←→
AD and the interior of the angle is

−→
AD \ {A}.

DC

B
A

FIGURE 5.5. Theorem 5.12

Proof. This follows from two applications of Theorem 5.10. See Figure 5.5.

Theorem 5.13. Consider a triangle 4ABC. All the points of the segment BC, ex-
cept for the endpoints, lie in the interior of the angle 6 BAC.

D

C

B

A

FIGURE 5.6. Theorem 5.13

Proof. See Figure 5.6. Let D be a point between B and C. Then D and B are on
the same side of line

←→
AB because that line intersects

←→
CD at B, which is not between

C and D. Similarly, D and B are on the same side of line
←→
AC . But this means that

D is in the interior of angle 6 C AB.

Theorem 5.14. (Crossbar Theorem) Let4ABC be a triangle, and let D be a point
in the interior of the angle 6 A. Then the ray

−→
AD intersects the side BC of the tri-

angle opposite to 6 A.
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FIGURE 5.7. Crossbar Theorem
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FIGURE 5.8. Crossbar Proof

Proof. Refer to Figure 5.7 for the theorem statement and Figure 5.8 for the proof.
This is pretty tricky, and the reader is invited to skip it for now, unless possessed by
particular zeal.

Designate the lines
←→
AC ,
←→
AD,
←→
AB by `, m, and n respectively. Let E be a point

on line n such that E A B (Theorem 3.21). Let F be a point on the segment
EC such that E F C (Theorem 3.21 ).

We make several observations:

1. E and B are on opposite sides of ` because ` intersects EB at A.
2. E and F are on the same side of ` because ` intersects←→EF at C, which is not

between E and F.
3. D and B are on the same side of ` because D is in the interior of the angle
6 C AB.

4. Therefore F and D are on opposite sides of `.
5. D and C are on the same side of n since D is in the interior of the angle 6 C AB.
6. C and F are on the same side of n because n intersects

←→
FC at E, which is not

between F and C.
7. Therefore F and D are on the same side of n.

Since F and D lie on opposite sides of `, the segment FD intersects ` at some
point A′. Since F and D lie on the same side of n, the point A′ is not on n, and in
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particular A′ 6= A. If F were on line m, then←→FD would be equal to m. But this
cannot be so, beause←→FD intersects ` at A′ while m intersects ` at A.

Thus we conclude that m does not intersect EC at any point F between E and C.
Thus E and C are on the same side of m. But E and B are on opposite sides of m
because m intersects EB at A and E A B. Therefore C and B are on opposite
sides of m, and m must intersect CB at some point X between C and B.

It remains only to show that X is on the ray
−→
AD ⊆ m. But according to Theorem

5.13, X is in the interior of the angle 6 BAC, and according to Theorem 5.12, the
intersection of the interior of the angle and the line m is contained in the ray

−→
AD.

Therefore X is on the ray
−→
AD.

Exercise 5.15. The intersection of two convex sets is convex. The intersection of
several convex sets is convex.

In the following, L is a line in a plane P , and H1 and H2 are the two half-planes
of P determined by L.

Exercise 5.16. The closed half-plane H1 ∪ L is convex.

Exercise 5.17. H1 contains at least 3 non-colinear points.

Exercise 5.18. P is the unique plane containing H1.


